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Abstract—Heating, ventilation, and air conditioning (HVAC)
systems in buildings have great potential to provide regulation
capacity that is leveraged to maintain the balance of supply
and demand in the power system. In order to make full use of
HVAC’s regulation capacity, it is important to accurately evalu-
ate it ahead of time. Because physical model-based approaches
are hard to implement and highly personalized for each building,
data-driven approaches are preferable for this capacity evalua-
tion. However, given the insufficient data for individual buildings
and buildings’ potential unwillingness to share their data because
of privacy concerns, it is extremely challenging to build a high-
performance data-driven regulation capacity evaluation model.
In this paper, we propose a privacy-preserving framework that
combines federated learning and transfer learning to evaluate the
regulation capacity of HVAC systems in heterogeneous buildings.
Specifically, a classified federated learning algorithm is proposed
to build capacity evaluation models of HVAC systems for differ-
ent building types. Each building trains its model locally without
sharing data with other buildings to preserve privacy. The algo-
rithm also tackles data insufficiency and achieves high evaluation
accuracy. In addition, we design a cross-type transfer learning
algorithm to enhance model generalization and further address
data deficiency. A protocol is created for the above two algo-
rithms to protect privacy and security. Finally, numerical case
studies are conducted to validate the proposed framework.

Index Terms—Demand response, federated learning, HVAC
system, privacy-preserving, regulation capacity, transfer learning.

I. INTRODUCTION

W ITH the increasingly high penetration of renewable
energy sources (RES), the uncertainty of power system

generation has greatly increased owing to the high unpre-
dictability and volatility of RES [1]. Therefore, more flexi-
ble regulation capacities are needed to maintain the system
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Fig. 1. Diagram of an aggregator coordinating multiple buildings.

supply–demand balance [2]. With the phasing out of conven-
tional flexible generating units (e.g., thermal generators and
gas turbines), demand response is gaining more attention for
providing regulation capacity in power system operation and
has already been adopted by leading countries worldwide [3].

Heating, ventilation, and air conditioning (HVAC) systems
in buildings have great potential to furnish regulation capacity
[4] because they account for a large share of total electricity
consumption, (e.g., over 40% in many cities in the world) in
addition to having the thermal inertia to keep comfort levels
within acceptable limits during regulation [5]. In addition, the
automation devices that are already present in the system can
be utilized to reduce infrastructure costs and realize intelli-
gent remote control. Furthermore, owing to the large number
and wide distribution of HVAC systems, an aggregator is usu-
ally exploited to integrate and regulate the capacities of many
buildings together, and participates in the electricity market
as an agent representing all of the buildings [6], as shown in
Fig. 1. In an electricity market, the aggregator usually needs
to provide a regulation capacity offer in advance. Then, dur-
ing real-time operations, if the aggregator fails to provide the
regulation services as it promised, it may be penalized or
even expelled from the market [7]. Hence, it is critical for
the aggregator to accurately evaluate the regulation capacity
of all HVAC systems in buildings ahead of time.

However, accurate regulation capacity evaluation can be
challenging because precisely modeling HVAC systems is
difficult. Fabietti et al. [8] proposed a model-predictive con-
trol (MPC) framework to determine the regulation capacity
of commercial buildings and provide frequency regulation
services for the Swiss electricity market. Pavlak et al. [9] com-
bined the zone temperature setpoint perturbation method with
MPC to evaluate the hourly regulation capacity of commercial
buildings in the ancillary service market. Ali et al. [10] derived
a building thermodynamic model and then proposed a mathe-
matical formula to evaluate the capacity of its HVAC system.
Further, Lu [11] applied a simplified equivalent thermal model
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for simulating residential HVAC units. Goddard et al. [12]
developed a single-state variable system model for HVAC
systems to predict power consumption and evaluate regulation
capacity. The above studies relied on precise physical mod-
els to determine the regulation capacity of HVAC systems in
buildings. These models usually include a large number of
parameters, some of which are often difficult or even impossi-
ble to estimate. In addition, the building indoor temperature is
influenced by various factors, including heat transfers across
buildings and heat gains from the environment, which are
computationally expensive to model. Thus, it is difficult to
apply physical-model-based methods for regulation capacity
evaluation of HVAC systems in heterogeneous buildings.

To overcome the aforementioned challenges, recently,
researchers have widely used data-driven model-free methods.
As such, some researchers have proposed supervised learning
approaches. For example, Javed et al. [13] presented a random
neural-network-based smart controller to estimate room heat
consumption and then control the HVAC system. Kim [14]
utilized artificial neural networks for HVAC system modeling
in a multi-zone building and then used it to ensure thermal
comfort and cost-effective operation. Some other researchers
have adopted reinforcement learning (DRL) algorithms. For
example, Yu et al. [15] and Li et al. [16] adopted DRL to
tackle uncertainties of HVAC system operations and electricity
prices, respectively. Yu et al. [17] extended single-agent DRL
to multi-agent DRL with an attention mechanism, enabling
unified control of multiple HVAC systems. These data-driven
approaches require sufficient high-quality historic data for
training. However, this can be challenging in practice, espe-
cially for new buildings or those without proper metering
systems.

To resolve the problem of some buildings not having suffi-
cient data for data-driven regulation capacity evaluation, two
possible approaches can be used: 1) sharing the data across dif-
ferent buildings to train a high-performance global model that
can be used for all buildings; 2) applying well-trained models
from buildings with sufficient data to those without sufficient
data. For the first approach, it is common practice to use a
central entity to collect data from all buildings and carry out
training processes. However, buildings may be unwilling to
share their data owing to privacy concerns. To protect privacy,
researchers have proposed federated learning, which allows
users to collaboratively train a global model without sharing
data, only exchanging gradients or model parameters [18].
Several studies have exploited federated learning in power
systems for electricity consumer characteristics identifica-
tion [19], solar generation disaggregation [20], and distributed
energy resources forecasting [21]. For the second approach,
transfer learning [22] is usually adopted, which transplants
knowledge learned from one domain to another domain based
on similarities in data, tasks, or models between domains.
Therefore, it is possible to obtain a high-performance model
with little or even no data in some buildings by exploiting
the well-trained model from other buildings. There has been
some research utilizing transfer learning in power systems,
such as nonintrusive load monitoring, wind power prediction,
and power system security assessment [23], [24], [25], [26].

However, the above two approaches can not address our
problem well individually. First, owing to the FedAvg algo-
rithm of federated learning, the global model may not
reflect the differences between HVAC systems in heteroge-
neous buildings, which may lead to performance degradation
[18], [27]. Second, the prerequisite for transfer learning to
be able to transfer knowledge is to have well-trained mod-
els from other buildings. However, developing a well-trained
model may already face data deficiency and privacy issues.

To fill the aforementioned research gap, we propose a
privacy-preserving deep learning framework that combines
federated learning and transfer learning to train a data-
driven model for regulation capacity evaluation of HVAC
systems in heterogeneous buildings. Compared with the pub-
lished literature, the main contributions of this paper are
threefold:

1) A classified federated learning algorithm is designed to
build high-performance evaluation models for HVAC
system regulation capacity by leveraging data from
multiple buildings. According to the designed identifica-
tion scheme, each model is only trained by data from one
type of buildings. Compared with traditional federated
learning methods to obtain a global model of all build-
ings, each type of buildings receive a personalized model
through the proposed algorithm. The personalized model
avoids performance degradation due to model overgen-
eralization, which is caused by the use of data from
excessively heterogeneous buildings.

2) A cross-type transfer learning algorithm is developed
to further improve the performance of models that are
trained by the classified federated learning algorithm.
For building types that all buildings have the issue of
insufficient data, this algorithm enhances their model
accuracy by transplanting knowledge from the well-
trained models of other building types. Further, it also
makes up for inadequate model generalization, allowing
the model to be applied to other buildings.

3) A novel protocol is created for the above two algo-
rithms to protect the privacy of building data and model
parameters during the training processes. It also con-
tains a secure transmission scheme that can guarantee
communication security and provide identity authenti-
cation. Further, each building processes data locally,
which effectively preserves the privacy of the building’s
data.

The rest of this paper is organized as follows. In Section II,
the problem background, threat model, and design goals in
this work are introduced. The proposed method and techni-
cal details are elaborated on in Section IV. In Section V, the
effectiveness of the proposed method is validated by numerical
experiments. Finally, Section VI concludes this paper.

II. PROBLEM STATEMENT

In this section, we introduce the problem of regulation
capacity evaluation, the security and privacy threat model, and
the design goals in this paper.

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 16,2025 at 06:22:36 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: PRIVACY-PRESERVING REGULATION CAPACITY EVALUATION FOR HVAC SYSTEMS 3537

A. Regulation Capacity Evaluation

We consider an aggregator coordinating a group of hetero-
geneous buildings in this paper. Each building evaluates its
regulation capacity in advance, and then the aggregator aggre-
gates these regulation capacities and represents buildings when
bidding in the regulation market. We assume that buildings
have some historical data on power load profiles and regula-
tion capacities. Suppose that the regulation capacity at time t is
yt, and because the bid needs to be made in advance, we denote
the feature vector used to evaluate yt as xt−n (we set n = 1
in this paper for the 1-hour-ahead evaluation). Therefore, we
utilize a data-driven model to evaluate the regulation capacity
of HVAC systems in buildings via regression:

yt = f (xt−n; θ), (1)

where f (·; θ) is the evaluation model with parameters θ .
However, accurately evaluating buildings’ regulation capac-

ities ahead of time is challenging. On the one hand, some
buildings may not have sufficient historical data owing to
the low quality of data collection, and the data requirements
of the model also increase as the problem becomes more
complex and difficult. Therefore, it is difficult to accurately
evaluate the regulation capacity through an individual build-
ing’s data, according to Eq. (1). This insufficient data problem
may be tackled by collecting multiple buildings’ data for joint
model training. However, on the other hand, different build-
ings belong to different entities, so they may be unwilling to
share their data with the aggregator or each other because it
may lead to the disclosure of their privacy.

B. Threat Model

The security and privacy threats considered in this paper
may come from both the internal system and the external
world, primarily against building data and model parameters.

1) Threats From the Internal System: Within the system,
we assume that the cloud server (i.e., the aggregator in this
paper) is a semi-honest party that performs the given tasks hon-
estly but is curious about building data and model parameters.
In addition, it is assumed that all buildings are also honest
but curious; that is, they complete their work as specified but
also attempt to access data from other buildings. This may be
because most buildings do not have sufficient data to train a
high-performance model of their own.

2) Threats From the External World: For threats from out-
side, we take malicious eavesdroppers into consideration as
the primary attackers, who may intercept the communication
channels to access the model parameters or even make reverse
inference about the building data.

C. Design Goals

Based on the aforementioned background and threat model,
the proposed framework should have the following objectives.

1) Accuracy: The devised framework should be able to
build a data-driven model that can accurately evaluate the
capacities of the HVAC systems in heterogeneous buildings.
The framework also needs to overcome the limited data of
buildings, which leads to low model accuracy.

2) Generalization: Considering that heterogeneous build-
ings are involved in training processes, the model needs
to have adequate generalization. This means that the model
can accurately evaluate regulation capacity for all buildings
involved in its training processes and even new ones (whose
data are not available). However, the excessive pursuit of gen-
eralization may lead to a decrease in model accuracy. The
proposed framework should properly balance model accuracy
and generalization.

3) Privacy: The proposed framework needs to meet pri-
vacy requirements, which means that its data cannot be
compromised and model parameters cannot be accessed with-
out permission. If privacy issues are not safeguarded, buildings
may be reluctant to participate in the collaborative training
processes, and the capacity evaluation model may not be built
correctly.

III. PRELIMINARIES

In this section, we briefly introduce some preliminaries
about the federated learning and transfer learning algorithm.

A. Federated Learning

The federated learning algorithm aims to build a machine
learning model, which collaboratively trains the model by dif-
ferent participants. Each participant utilize some data to train a
local model, and the data are stored and processed locally dur-
ing the training process. The collaborative training exchanges
model-related information (parameters or gradients of the local
model) rather than raw data, so the data privacy is protected.
The goal of the federated learning algorithm can typically be
expressed as minimizing the following objective function [18].

min
ω

F(ω), where F(ω) :=
K∑

k=1

pk · Fk(ω), (2)

where K is the total number of participants; pk is the weight
of the k-th participant, pk ≥ 0 and

∑
k pk = 1; Fk is the local

objective function of the k-th participant.
In addition, to ensure that model-related information is not

compromised through Eq. (2), the information is encrypted by
the encryption algorithm, and then transmitted and exchanged
between participants. The model built by the federated learn-
ing algorithm should be able to closely approximate the
performance of the ideal model, which is a machine learning
model directly trained by gathering all data.

B. Transfer Learning

Transfer learning can take advantage of the similar-
ity between data, tasks, or models to improve the model
performance in a new domain (termed the target domain) based
on the knowledge learned from an old domain (termed the
source domain). Specifically, the model learned in the source
domain is transplanted to the target domain to help accom-
plish the corresponding task [28]. Before giving the formal
definition of transfer learning, we define the domain and the
task. A domain D consists of two parts: a feature space X
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Fig. 2. The privacy-preserving framework with federated learning and
transfer learning.

and a marginal distribution P(X) of a possible feature vec-
tor X; thus, D = {X , P(X)}. The symbol X is the space
of all feature vectors, and the symbol X denotes an instance
set of feature space, where X = {x|xi ∈ X , i = 1, . . . , n}.
For a given domain D, a task T is defined by two parts: a
label space Y and a decision function f (i.e., y = f (x)); thus,
T = {Y, f }. The symbol Y is the set of all labels, and the
symbol f is learned from the feature vector and label pairs
{(xi, yi)|xi ∈ X , yi ∈ Y, i = 1, . . . , n}.

Given a source domain Ds with a corresponding source task
Ts and a target domain Dt with a corresponding target task Tt,
the transfer learning algorithm utilizes the knowledge from
Ds and Ts to improve the performance of the target decision
function ft, where Ds �= Dt or Ts �= Tt. As such, the transfer
learning algorithm learns ft using the source domain data, so
the decision loss of ft in the target domain is the smallest, as
follows:

f ∗t = arg min
ft

Ex∈Xs,y∈YsL(ft(x), y), (3)

where f ∗t is the optimal target decision function, and L is the
loss function, which measures the decision discrepancy.

IV. PROPOSED METHODOLOGY

In this section, we expound on our proposed framework that
combines federated learning and transfer learning. In the fol-
lowing sections, B = {Bi|i ∈ I = {1, 2, . . . , I}} denotes the set
of buildings, where Bi is the set of building of type i. Symbol
bi,j ∈ B denotes an arbitrary building, where i indicates its
building type, and j ∈ Ji = {1, 2, . . . , |Bi|} is the index of
this building in its type. Symbol Ki ⊆ Ji denotes the set of
buildings that participate in collaboration.

A. Framework Overview

The framework in this paper roughly consists of one classi-
fied federated learning algorithm and one cross-type transfer
learning algorithm, and it can preserve privacy and security, as
shown in Fig. 2. When the data of a certain building are insuf-
ficient or missing, the evaluation model can be trained using

data information from other buildings of the same type via
the classified federated learning algorithm. Moreover, if there
are no similar buildings of the same type or all buildings in a
type do not have sufficient data, the cross-type transfer learning
improves the performance of the model, by leveraging models
of other types of buildings whose data are sufficient. In this
paper, a model is considered as a high-performance one if:
1) it has high accuracy that not only the discrepancy between
the evaluated value and the real value is small, but also all the
evaluated values are relatively stable; that is, all of them are
close to the corresponding real values; and 2) it has high gen-
eralization, which means it can make an accurate evaluation
for unknown samples that are not involved in training or even
from new buildings.

There are mainly three types of entities in the framework:
the trust authority, the cloud server, and the buildings.

1) Cloud Server: The cloud server undertakes the initial-
ization, aggregation, and distribution of model parameters. By
aggregating the local model parameters from each building,
the cloud server eventually obtains a comprehensive model,
which is then sent back to the buildings. Note that the cloud
server does not have data to train the model.

2) Buildings: Each building has an HVAC system and may
have some historical data to exploit. Thus, the building is in
charge of training a local regulation capacity evaluation model
through its data and updating parameters of the local model
by interacting with the cloud server. Furthermore, with the
coordination of the cloud server, the models of the same type
of buildings are identical after aggregation.

3) Trust Authority: The trust authority is responsible for
the initialization of the secure privacy-preserving protocol,
which generates the public key and private key for the Paillier
cryptosystem and establishes secure communication channels
between each building and the cloud server. In addition, it also
distributes the tag, which is used to identify the building type,
to others. Furthermore, the trust authority is assumed to be a
fully trusted third party, which does not pose any threat to the
framework.

B. Classified Federated Learning Algorithm

The classified federated learning algorithm connects
multiple buildings to collaboratively train high-performance
regulation capacity evaluation models. Unlike traditional fed-
erated learning, the proposed algorithm train a personalized
model for each building type. We classify buildings according
to their usage types, such as office, hotel, and other commercial
buildings. HVAC systems in different types of buildings usu-
ally have different regulation characteristics considering that
they have different building structures, daily social activities,
and load patterns. The whole process of the algorithm has five
stages (see Algorithm 1).

1) System Initialization: In the first stage, the trust author-
ity establishes secure communication channels between each
building and server and produces the public key PK and pri-
vate key SK for privacy-preserving federated learning accord-
ing to the Paillier cryptosystem (see details in Section IV-D1).
Then, the cloud server initializes regulation capacity model
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Algorithm 1: Classified Federated Learning With Privacy-
Preserving

Input : Participating building index set {Ki|i ∈ I}, data
resources for all participating buildings {Di,j|j ∈ Ki}.

Output : The capacity evaluation model.
1 Initialization:
2 Generate the key pair {PK,SK} = KeyGenerate(); Initialize the

model parameters ω(0) and other parameters LB, LE,L, η, �;
Determine the communication round Rc; Report the data size
|Di,j| to the cloud server; Calculate contribution weight αi,j
for each building, where αi,j = |Di,j|/∑

j∈Ki
|Di,j|.

3 Procedure:
4 for i ∈ I, j ∈ Ki do
5 Set ω

(0)
i,j = ω(0) and other parameters with LB, LE,L, η, �;

6 end
7 Set r = 0;
8 while r < Rc do
9 For Buildings:

10 for i ∈ I, j ∈ Ki do
11 Perform local training with local data Di,j as per

Algorithm 2 and obtain updated parameters (ω
(r)
i,j )′;

12 Encrypt (ω
(r)
i,j )′ and get encrypted parameters ci,j by

Eq. (10), where ci,j = FedEncrypt((ω(r)
i,j )′);

13 Upload ci,j to the cloud server;
14 end
15 For Cloud Server:
16 Aggregate ciphertexts by type and obtain aggregated

encryptred parameters ci = FedAggregate(ci,j), according
to Eq. (11);

17 Send ci back to bi,j;
18 For Buildings:
19 for i ∈ I, j ∈ Ki do
20 Decrypt ci and get the aggregated model parameters

ω
(r+1)
i,j = FedDecrypt(ci), according to Eq. (12);

21 Update the local model parameters by ω
(r+1)
i,j ;

22 end
23 r← r + 1;
24 end

parameters ω(0) and determines some other parameters related
to model training, such as the local batch size LB, local training
epoch LE, loss function L, learning rate η, and optimizer �.
The above parameters are assigned to each building so that
the local training settings are identical for each building and
ω

(0)
i,j = ω(0). In addition, the communication round Rc is

defined by the cloud server as the total number of interac-
tions between buildings and the cloud server. Finally, the cloud
server calculates the corresponding contribution weights αi,j

for each building based on the local training dataset Di,j, where
αi,j = |Di,j|/∑

j∈Ki
|Di,j|.

2) Local Model Training: After receiving the initial model
parameters ω(0) and other parameters LB, LE, L, η, �

from the cloud server, the building begins to train the reg-
ulation capacity evaluation model using its own data. For the
r-th round, the building bi,j calculates the model gradient and
updates its parameters ω

(r)
i,j . After this round of local training,

the model parameters are updated to (ω
(r)
i,j )′. The details of the

local training are summarized in Algorithm 2.

Algorithm 2: Local Model Training

Input : Local model parameters ω
(r)
i,j , local data Di,j, local

batch size LB, local epoch LE, optimizer �.
Output : Local updated model parameter (ω

(r)
i,j )′.

1 Initialization:
2 Divide Di,j into batches by LB; Set epoch = 1;
3 Procedure:
4 while epoch <= LE do
5 for each batch of data do
6 Compute loss L and gradient ∇

ω
(r)
i,j
L;

7 Update the parameters using the Adam algorithm,

according to Eqs. (4)–(8): ω
(r)
i,j ← ω

(r)
i,j − η�(∇

ω
(r)
i,j

);

8 end
9 epoch← epoch+ 1;

10 end
11 (ω

(r)
i,j )′ ← ω

(r)
i,j ;

We select the quadratic loss function to quantify the
discrepancy between the real regulation capacity and the eval-
uated regulation capacity. Furthermore, we choose the Adam
algorithm for model optimization [29], which uses momentum
as the direction of the parameter update and also adaptively
adjusts the learning rate, as follows:

ut = γ1 · ut−1 + (1− γ1) · ∇t, (4)

vt = γ2 · vt−1 + (1− γ2) · ∇t �∇t, (5)

ût = ut

1− γ t
1
, (6)

v̂t = vt

1− γ t
2
, (7)

ωt = ωt−1 − η√
v̂t + ε

· ût, (8)

where ∇t denotes the gradient at iteration t; ut and vt are the
first and second moment estimates of the gradient, respec-
tively; γ1 and γ2 denote two exponential decay rates; � is
the element-wise multiplication; ωt is the model parameters
at iteration t; η denotes the learning rate; and ε is a small
constant to maintain numerical stability.

3) Encryption and Transmission: After the local training
and model parameters update, the building bi,j encrypts its
model parameters (ω

(r)
i,j )′ based on the FedEncrypt func-

tion to generate the ciphertext ci,j (i.e., the encrypted model
parameters). Then, ci,j is uploaded to the cloud server.

4) Classified Aggregation: The cloud server aggregates the
received ciphertexts ci,j for each building type i based on the
buildings’ contribution weights αi,j using the FedAggregate
function. Then, the aggregated ciphertext ci is delivered back
to the corresponding buildings of type i.

5) Decryption and Update: The FedDecrypt function is
applied to decrypt the aggregated ciphertext ci to obtain the
aggregated parameter ω

(r+1)
i,j , which is equal for the same i.

Then, building bi,j updates its local model parameters from
(ω

(r)
i,j )′ to ω

(r+1)
i,j , which also represents the completion of a

round of communication.
The last four stages described above are repeated until

all communication rounds have been completed. Eventually,

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 16,2025 at 06:22:36 UTC from IEEE Xplore.  Restrictions apply. 



3540 IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 5, SEPTEMBER 2023

Fig. 3. Illustration of cross-type transfer learning algorithm.

buildings of the same type collaboratively train an identical
model for regulation capacity evaluation. Although the build-
ings do not share data directly and sacrifice privacy, they can
significantly enhance their model performance through this
collaboration. Furthermore, as long as there are sufficient data
in the same type of buildings, even a building with limited or
no data can obtain a comparatively accurate evaluation model.

C. Cross-Type Transfer Learning Algorithm

When the overall data from the same type of buildings are
not sufficient, the proposed federated learning model may still
not achieve high performance. Thus, we propose the cross-
type transfer learning algorithm. Unlike the classified federated
learning algorithm that targets cooperation between buildings
of the same type, this algorithm synergizes models between
different building types. Specifically, according to Eq. (3), it
utilizes models from building types with better performance
to help relatively poor ones with insufficient data.

There are three main categories of transfer learning: the
instance-weighting method, feature transformation method,
and model pre-training method [28], [30], [31]. In our
problem, each building only has its own data and no access to
other buildings’ data owing to security and privacy issues. The
first two transfer learning approaches cannot be used because
they need to acquire others’ data. However, different types of
buildings have the same data format and model target, and their
only differences are building types and data scales. Hence, we
employ the model pre-training method to transplant knowledge
from one type to the other, which does not need to directly
access any data from other buildings.

There are three entities involved in the algorithm: the source
building (the building with a high-performance model), the
target building (the building with a low-performance model),
and the cloud server, which is shown in Fig. 3. The general
process of the algorithm has five steps. First, the target building
initiates a request for assistance from other types of buildings.
Second, the source building encrypts and uploads its model
parameters using the Paillier cryptosystem to the cloud server.
After receiving the encrypted model parameters from the cloud

server, the target building decrypts them and replaces them as
local model parameters. Last, the target building fine-tunes the
model parameters with its own data. Fine-tuning is done to
adjust the model parameters of the source building and make
them more suitable for the target building’s task based on a
small dataset of the target building. In order to make better
use of the source building model and avoid overfitting, the
optimal fine-tuned model parameters are:

ω∗ = arg min
ω

1

|DT|
|DT|∑

t=1

L
(

f
(

xt;ωS
)
, yt

)

+ β
d√|DT| ||ω − ωS||2, (9)

where DT is the dataset of the target building; symbol ωS

denotes the model parameters of the source building; sym-
bol L is the loss function of the model; symbol f (xt;ωS) and
yt are the evaluated and true value of the t-th training data
of the target building, respectively; symbol β is a regulariza-
tion factor to be tuned; and symbol d = ||DT − DS||2 is the
discrepancy measured by the Euclidean distance between the
average data of the source building and the target building.

The fine-tuned model using Eq. (9) allows the target build-
ing to make a more accurate evaluation, which further
improves the model performance. Further, the source building
also enhances its model generalization by applying its model
to other data through transfer learning.

D. Secure Privacy-Preserving Protocol

In this part, we design a secure privacy-preserving protocol
for the proposed framework to guarantee the privacy of data
and the security of the communication processes. The Paillier
cryptosystem [32] is utilized in our protocol to ensure privacy-
preserving of the classified federated learning algorithm in
Section IV-B and the cross-type transfer learning algorithm
in Section IV-C. To effectively mitigate the malicious eaves-
droppers or other attackers, we exploit the advanced encryption
standard (AES) algorithm [33] to establish secure communi-
cation channels between each building and the cloud server.
Moreover, the MD5 message-digest algorithm [34] is used to
implement authentication and tamper resistance when trans-
mitting messages through secure communication channels. In
addition, tags indicating building types not only play a key role
in the classified federated learning algorithm but also assist in
identity authentication. The protocol consists of four functions
and one scheme, introduced as follows.

1) KeyGenerate(): The trust authority generates the public
key PK = (n, g) and private key SK = (λ, μ) according to
the standard Paillier cryptosystem. Then, the public key PK is
made public, as is the private key SK distributed to all build-
ings. The key generation process is divided into the following
three steps. First, select two random large prime numbers
p and q that satisfy gcd(pq, (p − 1)(q − 1)) = 1, where gcd
is the greatest common divisor. Second, calculate n = pq and
λ = lcm(p−1, q−1), where lcm is the least common multiple.
Then, select a random base number g ∈ Z∗

n2 as the generator,
and let μ = (L(gλ mod n2))−1 mod n. The g can be found
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efficiently by checking whether gcd((L(gλ mod n2)), n) = 1,
where L(x) = x−1

n .
2) FedEncrypt(): Given a message mi,j, which represents

the model parameters of bi,j, that is, ω
(r)
i,j in the corresponding

round r, select a random number z ∈ Z∗n , 0 < z < n. Then,
encrypt the model parameters using the public key PK and
obtain the corresponding ciphertext ci,j by

ci,j = gmi,j · zn mod n2. (10)

3) FedAggregate(): With the uploaded ciphertexts
{ci,j | j ∈ Ki}, the cloud server aggregates them according
to the corresponding contribution weights {αi,j}. Then, the
cloud server calculates the aggregated encrypted model
parameters ci by

ci =
∏

j∈Ki

(
ci,j

)αi,j

=
∏

j∈Ki

(
gαi,jmi,j · zαi,jn

)
mod n2

= g
∑

j∈Ki
αi,jmi,j ·

∏

j∈Ki

zαin mod n2. (11)

4) FedDecrypt(): After receiving the aggregated ciphertext
ci back from the cloud server, building bi,j decrypts it with
the private key SK and obtains the aggregated parameters mi

through the following equation:

mi = L
(

cλ
i mod n2

)
· μ mod n

=
L
(

gλ
∑

j∈Ki
αi,jmi,j ·∏j∈Ki

zλαin mod n2
)

L
(
gλ mod n2

) mod n

=
L
(

gλ
∑

j∈Ki
αi,jmi,j mod n2

)

L
(
gλ mod n2

) mod n

= λ ·∑j∈Ki
αi,j · mi,j

λ
mod n

=
∑

j∈Ki

αi,j · mi,j mod n. (12)

5) Secure Transmission Scheme: The trust authority sets up
secure communication channels between each building and the
cloud server, and assigns the symmetric key si,j to both sides
of the channel. Thus, each building only has a key for its
own channel, while the cloud server has keys for all chan-
nels. Further, the trust authority also distributes a tag to each
building, which indicates its building type. In other words,
buildings of the same type have identical tags. Note that the
cloud server also receives tags for all buildings, but they have
been processed into hash values by the MD5 algorithm. Thus,
although the cloud server does not know the exact value of
the tag, it can still use the hash value to determine the sender
of the message and whether the message has been tampered
with. The details of the protocol are shown below, and also
illustrated in Fig. 4:

(i) The building calculates the hash of its tag and splices it
in front of the ciphertext to form the valid information.

(ii) The building exploits the MD5 algorithm to generate a
digital fingerprint corresponding to its valid information

Fig. 4. Illustration of secure transmission scheme.

and splices it before the valid information to form the
complete information.

(iii) The building encrypts the complete information using
its symmetric key based on the AES algorithm, and then
uploads it to the cloud server through its communication
channel.

(iv) The cloud server decrypts the received content with the
symmetric key that is selected according to the channel.

(v) The cloud server generates a new digital fingerprint of
the received valid information and compares it with the
received digital fingerprint. If the two fingerprints are
the same, it justifies the valid information has not been
tampered with.

(vi) The cloud server verifies the received tag; afterward, the
comparison of the digital fingerprint is passed. If the
tag verification succeeds, it means that the ciphertext
is sent from the building corresponding to the channel.
Conversely, the ciphertext is from another building or
malicious attackers.

The Paillier cryptosystem is used to protect the privacy
of the proposed framework, enabling the server to aggre-
gate the building’s encrypted information without decryption.
As the Paillier cryptosystem is based on the decisional com-
posite residuosity assumption and cannot be cracked by the
server [32], the data privacy is protected (see the proof
in Appendix A). Moreover, the security of the proposed
framework is guaranteed by the AES. Because AES cannot
be cracked within a limited time [35], the training-related
information cannot be obtained by third parties other than
buildings and the server (see the proof in Appendix B).

V. CASE STUDIES

A. Experiment Settings

1) Dataset Description: The numerical experiments are
conducted on a dataset of HVAC systems in heterogeneous
buildings. Owing to the lack of historical regulation capac-
ity data, we adopt a reinforcement-learning-based simulation
method to collect and form a dataset [36], which is public on
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Github.1 The simulation is based on real HVAC systems and
buildings in Zhuhai, Guangdong, China (including commer-
cial buildings, office buildings, and hotels), and the weather
data are from the Meteorological Bureau of Zhuhai (see sim-
ulation details in Appendix B). Each piece of data consists
of 12 input features (including physical attributes, operational
status, and environmental information) and one output (i.e.,
regulation capacity), with 1-hour granularity. Because the con-
struction time and data collection time of buildings may be not
identical, the range of data varies from building to building,
where the longest span is 3 years, from November 2018 to
October 2021.

In this paper, data insufficiency is caused by an inade-
quate data range (e.g., some historical data are not collected),
especially under extreme weather conditions, when accurate
regulation capacity evaluation is more challenging. Thus, we
define a building with sufficient data, in that its data cover the
majority of historical extreme weather, while a building with
insufficient data has only historical data under a few or even
no extreme weather events.

2) Performance Metrics: The following metrics are
selected to measure the performance of the proposed model:
• Mean Absolute Error (MAE), MAE = 1

T

∑T
t=1|yt − ŷt|,

where yt is the prediction, ŷt is the true value, and T is
the total number of test data.

• Root Mean Square Error (RMSE), RMSE =√
1
T

∑T
t=1(yt − ŷt)2.

• Median Absolute Error (MedAE),
MedAE = median(|Y − Ŷ|), where Y = (y1, . . . , yT),
Ŷ = (ŷ1, . . . , ŷT), and function median(X) takes the
median of all values in X.

• Coefficient of Determination (R2), R2 = 1 −∑T
t=1(yt−ŷt)

2
∑T

t=1(yt− 1
T

∑T
t=1 yi)2 .

The former three metrics describe the gaps between the pre-
dicted and true values in [0,+∞). The last one indicates how
well the predictions approximate the real data in [0, 1]. If the
predictions perfectly fit the data, R2 = 1.

3) Scenarios and Benchmarks: To demonstrate the effec-
tiveness of the proposed method, we consider three different
scenarios.
• Scenario I: There is a building with insufficient data,

while some other buildings of the same type have suf-
ficient data.

• Scenario II: There is a new building with no histori-
cal data, while some buildings of the same type with or
without sufficient data are similar to this new building.

• Scenario III: There is a building type of which all build-
ings have insufficient data, while some buildings in other
types have sufficient data.

Because the problem of insufficient data is mainly man-
ifested as little or no building data, we believe that these
three typical scenarios can represent most occurrences of data
insufficiency. Scenarios I and II verify the classified feder-
ated learning algorithm, while Scenario III demonstrates the
effectiveness of the cross-type transfer learning algorithm.

1https://github.com/KunWang-22/regulation-capacity-data

TABLE I
IMPLEMENTATION DETAILS OF CASE STUDIES

4) Environmental Setup: The proposed framework is
implemented by an open-source machine learning framework
PyTorch [37], and the communication processes are simu-
lated using flask.2 The details of model structures and training
parameters are summarized in Table I. All of the experiments
are conducted on a desktop with Intel Core i7-9700 CPU
and NVIDIA GeForce RTX 2080TI GPU (64GB RAM) on
a Windows 10 Enterprise platform.

B. Performance of Capacity Evaluation Model

In this part, we validate the performance of our proposed
framework in the aforementioned three scenarios. For the com-
prehensive validation, in every scenario, we construct 50 cases
of insufficient data for each type of building (i.e., commercial
building, office building, and hotel), where each type of case
involves different buildings and different days. The following
five benchmarks are selected for comparison with our proposed
method, all of which use MLPs as the evaluation model, as in
the proposed method.
• Benchmark A: The model for the objective building in

Scenario I is trained based on its own insufficient data.
• Benchmark B: The model for the objective building

in Scenario II is trained by a similar building with
insufficient data.

• Benchmark C: The model for the objective building in
Scenario II is trained by a similar building with sufficient
data.

• Benchmark D: The model for the objective building in
Scenario III is trained by the federated learning algorithm
using all the data from all of the buildings of the same
type.

• Benchmark E: The model for the objective building in
Scenario III is trained by the federated learning algorithm
using all the data from all of the buildings of the same
type and other types with sufficient data.

We compare the evaluation performance of the proposed
method on 450 problem instances in each scenario with bench-
marks, and the statistical results are summarized in Table II.
It can be seen that the proposed method outperforms the
corresponding benchmarks on all of the evaluation metrics

2Flask:Web development framework (https://flask.palletsprojects.com).
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TABLE II
PERFORMANCE OF OVERALL SITUATION

regardless of the scenario. From the perspective of evalu-
ation error, the average MAE, RMSE, and MedAE of the
proposed method are at least roughly halved compared to
the benchmarks, with a maximum reduction of more than
400 kW. Moreover, the standard deviations of error metrics in
the proposed method are mostly controlled within 10, while
those in the benchmarks are distributed between 10 and 450.
Therefore, the proposed method not only has accurate eval-
uation results, but also the evaluation performance is stable,
which indicates that it can effectively solve the problem of
insufficient data. As for the R2 value, the standard deviation of
the proposed method is also lower than that of the benchmarks,
except for benchmarks A and B, because their R2 values are
small and close to zero. In scenarios B and C, the average R2

values of the proposed method also exceed 0.9, which indi-
cates that the proposed method can effectively fit the regulation
capacity of HVAC systems in buildings and make an accurate
evaluation.

To demonstrate the evaluation details, we randomly select
one instance from each scenario for a more intuitive and clear
comparison, as follows.

1) Scenario I - Insufficient Data for One Building: In this
scenario, we validate the performance of the proposed model
when a building has insufficient data. Fig. 5 shows the evalu-
ation results and performance of 1 week in scenario I utilizing
benchmark A and the proposed model, respectively.

It is clear that benchmark A has poor evaluation accuracy,
with a maximum error up to 1000 kW (see Fig. 5(a)). This
is because this building does not have sufficient data to con-
front the sudden drop in regulation capacity under extreme
weather conditions, and its data does not cover the majority
of historical extreme weather, while that of other buildings
do. In contrast, our proposed method can identify extreme
weather conditions and significantly improve the evaluation
performance. This results in a reduction of the maximum
error rate by nearly 60%. The problem of insufficient data
is addressed by data from other buildings of the same type. In
Fig. 5(b), for the model developed by our proposed method,
the MAE, RMSE, and MedAE metrics decrease from 472.37,
577.44, and 423.58 to 103.04, 141.33, and 77.82, respectively,
which indicates a distinct improvement in model performance.
In addition, the value of R2 increases from 0.01 to 0.85, imply-
ing a boost in evaluation performance due to the classified
federated learning algorithm.

Fig. 5. Evaluation result and performance metric of capacity evaluation
models under scenario I.

2) Scenario II - No Data for One Building: In this sce-
nario, we target the building without any data, which cannot
train the model at all. Likewise, the proposed method tackles
this kind of data deficiency using data from other same-type
buildings. The evaluation results and the performance metrics
of benchmark B, Benchmark C, and the proposed method in
scenario II are shown in Fig. 6.

Although benchmark B trains the target model based on the
data of a similar building, it still has large regulation capacity
evaluation errors; for example, benchmark B’s RMSE reaches
up to 438.12. This is because the data of the similar building
it used are insufficient. In comparison, benchmark C trains the
target model based on a similar building with sufficient data.
Its evaluation accuracy is significantly enhanced; for example,
its RMSE is reduced to 212.48. This performance difference
is more notable under extreme weather conditions that are
learned by benchmark C but not benchmark B. However,
because benchmark C only utilizes one building’s data, its
model still has significant errors. In contrast, the proposed
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Fig. 6. Evaluation result and performance metric of capacity evaluation
models under scenario II.

method exploits a large amount of data from buildings of
the same type so that it can accurately evaluate the regula-
tion capacity in the new building. The three error metrics of
the proposed model are all reduced to within 100, which is
significantly lower than those of the other two benchmarks.
Meanwhile, the R2 of the above three models is 0.01, 0.77,
and 0.95, respectively, indicating that the model has been
remarkably enhanced through our proposed method.

3) Scenario III - Insufficient Data for All Buildings in One
Type: In this scenario, even all of the data from one type of
buildings are not enough to train a high-performance model.
Unlike the previous two scenarios, we tackle this form of
data insufficiency with the help of data from other types of
buildings. The evaluation results and the performance metrics
of benchmark D, benchmark E, and the proposed method in
scenario III are shown in Fig. 7.

Benchmark D can identify extreme weather owing to sim-
ilar weather conditions in some data from other same-type
buildings. However, there is a drift in the evaluation; that is,
the estimated maximum capacity appears several hours later
than the corresponding real value, resulting in its MAE of
255.05. Although benchmark E has utilized a massive amount
of data from buildings of other types, its performance is only
marginally enhanced compared with benchmark D. The two
benchmarks’ MAE, RMSE, MedAE metrics, and R2 value
are all close. In contrast, the model of the proposed method,
which has been pre-trained by the source buildings and fine-
tuned by the target building, outperforms the two benchmarks
D and E significantly, with distinct progress in each metric.
Additionally, its R2 value reaches 0.95, indicating that the
evaluations fit the real capacities well. This proves that our

Fig. 7. Evaluation result and performance metric of capacity evaluation
models under scenario III.

proposed method can address the data deficiency problem by
utilizing data from different types of buildings with the help
of the cross-type transfer learning algorithm.

C. Performance Comparison With Existing Methods

In this subsection, we further verify the performance of our
proposed framework by comparing it with existing state-of-
the-art methods. Because there are few data-driven models
for regulation capacity evaluation in existing studies and the
regulation capacity evaluation can also be treated as a regres-
sion problem, we select some regression models in the load
forecasting field as benchmarks, as follows.
• Benchmark F1: an unshared convolutional neural network

(CNN) proposed by Li et al. [38] for both deterministic
and interval load forecasting.

• Benchmark F2: a grey wolf optimizer-based CNN
proposed by Jalali et al. [39] for electricity load fore-
casting.

• Benchmark F3: a stacked long-short term memory
(LSTM) network proposed by Li et al. [40] to predict
the HVAC consumption in buildings.

• Benchmark F4: a hybrid forecasting model based on
the temporal convolution network (TCN) and light
gradient boosting machine (LightGBM) proposed by
Wang et al. [41] for industrial load forecasting.

We compare the proposed method with the above four
benchmarks in three scenarios, and the results are shown in
Table III. It can be observed that the model performance of
the four benchmarks is enhanced to some extent compared
to MLPs because the benchmarks are all improved for regres-
sion tasks, e.g., unshared CNN, grey wolf optimizer, and TCN.
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TABLE III
PERFORMANCE COMPARISON WITH EXISTING METHODS

However, because of the insufficient data problem, the evalu-
ation results in the three scenarios are still not good enough;
where the maximum error is close to 400 kW, and the min-
imum error is still over 100 kW. In contrast, although the
proposed method only uses the multi-layer perceptron as the
evaluation model, its evaluation performance far outperforms
all the benchmarks in each scenario because it addresses the
data deficiency via the classified federated learning algorithm
and the cross-type transfer learning algorithm. For example,
the evaluation error of the proposed method in Scenario I
is reduced by at least 90 kW compared to the benchmarks,
nearly 40%. In Scenario II, the R2 value of our method is
more than 30% higher than the best benchmark, and the three
error metrics are also decreased by about 30 kW on average.
Similarly, in Scenario III, the R2 value is also increased by
0.255 (over 35%), and the MAE, RMSE, and MedAE are all
been reduced by almost half. These experiments prove the
superiority of the proposed method compared with other the
state-of-the-art methods.

The average training and inference time of the proposed
method are also compared with the four benchmarks. Table IV
shows that the training time of the proposed method is signifi-
cantly longer than the other four benchmarks. This is because
the encryption and decryption operations are involved in our
proposed method. However, the data-driven model is usually
trained offline and is not be deployed until the training has
been completed. After training, it can be used for a period
of time. Therefore, even if the training time of our method is
long, the speed of evaluation is not reduced and the timeli-
ness in the actual application is not affected. This can be seen
in the inference time, which is around 1 millisecond for both
our method and the four benchmarks. Considering that we
mainly focus on 1-hour-ahead regulation capacity evaluation,
the inference time is almost negligible, which verifies that our
method is timely and does not affect efficiency in application.

D. Performance Comparison With Local and Ideal Models

In this part, we compare the performances of the proposed
method with local models and ideal models. The local models
are trained by individual buildings using their own data, while
the ideal models are trained via the traditional centralized way,
which gathers all of the data in a central server and trains a

TABLE IV
THE TIMELINESS OF THE PROPOSED METHOD

TABLE V
NUMERICAL RESULTS OF THE LOCAL MODEL, THE IDEAL

MODEL, AND THE PROPOSED METHOD

model using all of the data. Note that the ideal model is still
a data-driven model rather than an actual load model so it
still inevitably has evaluation errors. As our proposed method
is based on the federated learning, its performance should be
close to the corresponding ideal model [18].

Table V summarizes the performance of the three types of
models in terms of MAE, RMSE, MedAE, and R2 under the
three scenarios I, II, and III. It is clear that the proposed
method outperforms the local models in all aspects and scenar-
ios. The three error metrics are reduced by 62% on average and
the average R2 is raised from 0.226 to 0.893. The performance
of our proposed method is also close to that of the ideal mod-
els, as the metric differences between these two models are
negligible. In Scenario III, the performance of our method even
exceeds that of the ideal model. Because the ideal model is
still a data-driven model, and the performance of the proposed
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Fig. 8. Training loss of the three models.

method is close to the ideal model, it is reasonable that the
proposed method outperforms the ideal model in some cases,
especially when the test data significantly differ from the train-
ing data. Therefore, our model satisfies the losslessness within
the acceptable range.

Fig. 8 shows the average training loss of the aforementioned
three types of models in the three scenarios. It can be seen that
the convergence of our proposed method and the ideal model
is approximately identical, which further proves the lossless-
ness of the proposed method. Although our proposed method
adopts the classified federated learning algorithm to preserve
the privacy of data, it still has a high performance close to
that of the ideal model. As for the local model, although the
training loss is the lowest, its numerical results are inferior
to the other two models. This may be because of insufficient
training data, resulting in the overfitting of the model.

VI. CONCLUSION

In this paper, we studied the regulation capacity evalua-
tion problem of HVAC systems in heterogeneous buildings,
which is hard to solve through physical-based and traditional
centralized data-driven methods. We proposed a deep learn-
ing framework that consisted of classified federated learning,
cross-type transfer learning, and the secure privacy-preserving
protocol. This framework can perform accurate regulation
capacity evaluation by addressing data insufficiency through
the collaboration of buildings without compromising pri-
vacy. Case studies under three scenarios demonstrate that our
proposed framework has high regulation capacity evaluation
accuracy and generalization, even when building data are not
sufficient or unavailable. The average estimation error of the
proposed framework is decreased by 77%, 49% and 64% in
three scenarios. Through a comparison with existing state-
of-the-art methods, the R2 value of the proposed framework
increases by at least 50% on average, where the effective-
ness and superiority have been further validated. In addition,
the results indicate that the performance and efficiency of our
method are close to the centralized method. The differences
between the two methods in estimation error and training loss
are within only 2kW and 0.0024kW, respectively. Although
the secure privacy-preserving protocol has no impact on the
accuracy of the proposed framework because it only protects

data privacy and security, it is necessary because it avoids data
leakage and makes collaborative training possible.

In this paper, we used the Paillier cryptosystem to encrypt
sensitive data, and completed the information exchange by
communicating with the server. Although data privacy was
protected, the designed protocol also increased the computa-
tional burden and time consumption. In future work, we intend
to reduce the computational cost of the cryptosystem, and
improve the interaction processes of the transmission scheme,
which makes the proposed method more secure and efficient
in practical applications. Moreover, we focused on the regula-
tion capacity evaluation in this paper, and the use of evaluation
values during real-time operations was usually regarded as the
market bidding or operation issue. Because different electric-
ity markets had different policies on the regulation reward and
punishment mechanism, it was necessary for the aggregator
to bid or operate strategically, which is an important research
topic and will also be our future work.

APPENDIX A

A. Security and Privacy Proof

1) Privacy: The Paillier algorithm is used to ensure user
privacy, and the objective is that the adversary cannot drive the
corresponding plaintext even if they obtain the ciphertext [32].
This is also an asymmetric encryption algorithm in which the
user utilizes the public key for encryption and the private key
for decryption. Because the adversary can obtain the public
key that is open to anyone, the attack model is the chosen-
plaintext attack, which presumes that the attacker can obtain
the ciphertexts for arbitrary plaintexts using the public key
[42]. The adversary hopes to use these ciphertexts to crack
the user’s ciphertext and obtain the user’s plaintext; thus, the
user’s privacy is compromised.

In this paper, the parameters of the user local model were
encrypted using the Paillier algorithm, and the calculation
process is as follows:

c = gm · rn mod n2,

where m and c are the plaintext and the ciphertext, respec-
tively; g and n form the public key (n, g); and n = p · q,
where p and q are large primes.

Therefore, the chosen-plaintext attack process for this algo-
rithm was that the adversary constructed a set of plaintext
ciphertext pairs {(mi, ci)}, intended to match the user’s plain-
text ciphertext pairs (m, c), and thus infered the plaintext of the
user. We could reduce this attack to a mathematical problem.
Given a composite n and an integer z, we can decides whether z
is an n-th residue modulo n2, that is, whether there exists a y
such that:

z = yn mod n2.

This problem is also regraded as the problem of deciding the
n-th residuosity, which distinguishes the n-th residues from the
non n-th residues. Similar to the problem of deciding quadratic
or higher-degree residuosity [43], the problem of deciding the
n-th residuosity is a random-self-reducible problem whereby
all of its instances are polynomially equivalent, so this problem
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TABLE VI
CHARACTERISTICS OF BUILDING TYPES

is either uniformly intractable or uniformly polynomial [44].
In addition, the problem of deciding the n-th residuosity is
computationally hard for prime residuosity [45]. Because we
choose a square number n2 as modulus and n = p · q,
there exists no polynomial time distinguisher for the n-th
residues modulo n2; that is, the above mathematical problem
is intractable [46]. Therefore, the Paillier algorithm achieves
indistinguishability under the chosen-plaintext attack, in that
the ciphertext does not leak any information in the plaintext,
also known as semantic security [47].

2) Security: The AES algorithm is used to protect commu-
nication security, and the objective is to prevent the adversary
from deriving plaintext from ciphertext [33]. The difference
is that the AES algorithm is a symmetric encryption algo-
rithm where the user exploits the same key for encryption and
decryption, and the key is a top secret. The AES algorithm
involves four kinds of operations: byte substitution, row shift,
column mixture, and round-key addition. The sequence of all
processes in encryption and decryption are exactly the oppo-
site, which ensures that the decryption operation can restore
the plaintext from ciphertext completely and correctly.

In this paper, because the adversary cannot obtain the key,
the brute force method is usually adopted, which calculates
each possible combination of the password and tests whether
it is the correct password. However, the time complexity of
this approach exponentially increases with the key length, that
is, the bits of the key [48]. Take the AES-128 (i.e., the key
length is 128 bits) algorithm as an example; 2127 attempts are
required on average. Even using the computing resources of
the Bitcoin network (around 3 ∗ 1019 operations per second),
it would approximately take a staggering 200 billion years to
crack, yet the Big Bang only occurred an estimated 13.8 billion
years ago. Moreover,it would cost over 107 trillion dollars to
crack AES-128, while the global GDP is less than 100 trillion
dollars a year. Thus, in terms of time complexity and economic
cost, it is almost impossible to crack the AES algorithm [49].

APPENDIX B

A. Building Characteristics and HVAC System Simulation

In this paper, we defined building types according to the way
buildings were used, including office buildings, commercial
buildings, and hotels. We separated commercial buildings from
hotels because of their different building structures and uses,

resulting in significant differences in load patterns and regu-
lation capacities. The characteristics of the different building
types are summarized in Table VI.

Because we focused on evaluating the regulation capacity
of HVAC systems in buildings, we simulated the operation of
HVAC systems and record the corresponding data for train-
ing and testing. The HVAC system converted energy between
water and wind, thereby controlling the indoor temperature
through cold wind. The details of thermal dynamic processes
are described below [50], [51].

The power consumption of HVAC systems can be calculated
based on the energy and mass balance, as follows:

Phvac
t = Qhvac

t /COP,

where Phvac
t and Qhvac

t are the electrical power and cooling
power of the HVAC system at time t, respectively, both in kW;
COP denotes the HVAC system’s coefficient of performance.

The Qhvac
t is determined by the HVAC system’s return water

temperature, as follows:

Qhvac
t = cwater · mwater

t · (Twater,r
t − Twater,s

t
)
,

where cwater is the specific heat capacity of water, in
kJ/(kg ·◦C); mwater

t is the instantaneous mass flow rate of
water at time t, in kg/s; Twater,r

t and Twater,s
t denote the return

water temperature and supply water temperature of the HVAC
system at time t, respectively.

The HVAC system adjusts the indoor temperature by pro-
viding cooling wind, and the return wind temperature can be
calculated by

Twind,r
t = (1− α) · T in

t + α · Tout
t ,

where Twind,r
t is the return wind temperature at time t; T in

t
and Tout

t denote the indoor temperature and outdoor tem-
perature of the building at time t, respectively; and α is
the ventilation coefficient, which is 0 when there is no air
exchange.

The cooling power of the supply wind comes from the cool-
ing power of the HVAC system, and there are some losses
during energy transfer. The supply wind temperature can be
calculated from the energy of the cold air and the return air
temperature, expressed as

Qwind
t = η1 · Qhvac

t ,

Qwind
t = cair · mwind

t ·
(

Twind,r
t − Twind,s

t

)
,
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where Qwind
t is the cooling power of the supply wind at time t;

η1 is the transfer efficiency coefficient of an HVAC system
to the air-handling unit; cair is the specific heat capacity of
air; mwind

t is the instantaneous mass flow rate of wind at
time t; Twind,r

t and Twind,s
t denote the return wind temperature

and supply wind temperature of the HVAC system at time t,
respectively.

Then, the indoor thermal dynamic is described as

cair · ρ · V · dT in

dt
= U · A ·

(
T in

t − Tout
t

)

− η2 · Qwind + ξ ·
(

T in
t − Tout

t

)
,

where ρ is the density of the air, in kg/m3; V and A denote
the volume and surface area of the building in m3 and m2,
respectively; U is the heat transfer coefficient of the building,
in kW/(m2 ·◦ C); η2 is the transfer efficiency coefficient of
air handling unit to indoor air; and ξ denotes the heat loss
coefficient.

According to the change of indoor temperature, the PID
controller adjusts the mass flow rate of wind at the next time
and controls the subsequent temperature variation, which can
be expressed as

mwind
t+1 = PID

(
T in

t − Tset
)
,

where mwind
t+1 is the instantaneous mass flow rate of wind at

time t + 1; PID(·) is the PID controller; and Tset denotes the
setting temperature of the HVAC system.
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