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Abstract—Short-term customer load forecasting is vital for the
normal operation of power systems. Unfortunately, conventional
machine learning-based forecasting methods are susceptible
to generalization issues (e.g., the customer heterogeneity and
distribution drift of load data), manifested in model performance
degradation. In recent years, some studies have employed the
advanced deep learning technology, such as online learning, to
overcome the aforesaid problems. However, these methods can
only alleviate the adverse impacts of generalization problems on
model performance, because they are inherently built on unstable
relationships (i.e., correlations). In this paper, we propose a novel
causal inference-based method to improve the generalization
for short-term customer load forecasting models. Specifically,
we first investigate the causal relations between input features
and the output in existing methods, and introduce the load
characteristics as an extra model input to enhance the causality.
Then, we closely inspect the causality in models by using the
causal graph to distinguish the confounder, followed by employing
the causal intervention with do-calculus to eliminate the spurious
correlations caused by the confounder. Moreover, we propose a
novel load forecasting framework with the load characteristic
extraction, characteristic pool approximation and characteristic-
injected model to realize the causal intervention in an efficient
and fidelity way. Finally, the effectiveness and superiority of our
proposed method are validated on a public dataset.

Index Terms—Causal inference, model generalization, short-
term load forecasting, spurious correlation, transformer.

I. INTRODUCTION

IN PROMOTING the achievement of carbon neutrality,
there is an increasingly urgent need for flexibility resources

to eliminate the system fluctuations brought by the increasing
integration of distributed energy resources. According to statis-
tics [1], the residential sector accounts for over 20% of national
energy consumption, harboring tremendous regulation poten-
tials. Furthermore, with the extensive deployment of advanced
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metering infrastructures, it provides a solid foundation for data
analytics to improve energy efficiency at the customer level.
To this end, demand response emerges at a historic moment,
which coordinates regulation resources from the demand side
to maintain the system balance [2].

Accurate load forecasting is recognized as an indispensable
part of implementing demand response programs, especially
short-term customer load forecasting [3]. For aggregators, load
forecasting facilitates the identification of suitable customer
groups to participate in demand response programs, and the
bidding in the market for maximizing revenue. For customers,
forecasted loads contribute to scheduling future load consump-
tion and evaluating regulation capacity for demand response
[4]. Unlike the grid-level forecasting with relatively regular
patterns, customer load forecasting is more challenging due to
the highly volatile nature of individual loads [5].

Short-term customer load forecasting has been in the
research hotspot for many years [3]. Broadly speaking,
existing methods can be classified into two main groups:
statistical-based and machine learning-based methods. The
statistical-based methods leverage mathematical models to
capture the relationship between input features and the output
for load forecasting. For instance, Li et al. [6] adopted the
least absolute shrinkage and selection operator to explore the
sparsity in historical loads. Teeraratkul et al. [7] proposed a
shape-based method with the dynamic time warping to forecast
household customer loads. On the other hand, with the boom
of deep learning, the machine learning-based methods has
became the primary pillar in load forecasting. Particularly,
numerous neural network models that are capable of sequence
modeling load data with temporal dependencies, have been
widely explored. For example, Li et al. [8] developed an
improved load forecasting method with the long short-term
memory neural network. Lin et al. [9] proposed a spatial-
temporal load forecasting framework based on the graph
neural network to capture the hidden spatial dependencies.
Moreover, Zhou et al. [10] proposed a robust load forecasting
model based on Bayesian learning. However, owing to the
heterogeneity in load consumption habits, deep learning-based
methods are prone to performance degradation, especially
when applied to load forecasting for multiple customers [11].

To remedy the aforementioned issue, the intuitive way is to
train individual forecasting models for each customer, known
as the local model [12]. Apart from that, some researchers
advocate the global model [13], which utilizes a single model
to perform load forecasting for multiple different customers.
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Furthermore, there has been an influx of researches that simul-
taneously consider the customers’ habit deviation and model
efficiency, as a compromise between local and global manners.
For instance, Yang et al. [14] designed a novel multitask
load forecasting framework with Bayesian deep learning and
clustering-based pooling techniques. Qin et al. [15] proposed
a novel load forecasting model for individual buildings, which
integrates the federated learning, search technique, and person-
alization approach. However, although these methods consider
load heterogeneity among customers, using static training data
results in ignoring the data distribution variation over time
[16]. What’s worse, customer loads hold susceptibility to many
factors in practice, which will aggravate the data distribution
variation and lead to poor model performance [17].

To overcome the problem of distribution variation over time,
some recent studies employ the dynamic approach to continu-
ously learn new data to update models. Von Krannichfeldt et al.
[16] developed a hybrid wind power forecasting method
integrated with ensemble learning and online learning to
exploit the most recent information. Li et al. [18] proposed
a deep kernel method with deep soft spiking neural networks
for residential load forecasting, which combines both offline
and online learning schemes. Moreover, Yang and Youn [19]
proposed a novel individual load forecasting method based
on temporal data pooling to provide prediction with the
most probable model. In addition to load forecasting, there
are studies on building models with consistent performance
in different environments [20]. In general, these approaches
can be classified into three categories: data manipulation,
learning strategy, and representation learning. However, these
deep learning-based approaches are purely built on corre-
lations between variables (i.e., input features and outputs)
[21]. Specifically, these correlations only represent superfi-
cial relationships between variables under particular contexts
(e.g., within training datasets), instead of essential laws (i.e.,
invariant mappings with probably physical significance) that
models genuinely want to learn. In other words, correlations
are unstable relationships between input features and outputs,
because they may change with different circumstances [22].
In this way, the above existing approaches are still in the
realm of instability, which has been identified as the culprit
for the instability and low generalization of deep learning
models [23]. Therefore, most existing techniques only simply
mitigate the adverse effects owing to the data distribution
discrepancy, rather than getting rid of the root cause (i.e.,
unstable relationships).

To address the aforementioned problems, some researchers
make use of the causality between input features and outputs
to build models, rather than correlations. Specifically, causality
describes the intrinsic and universal dependencies between
variables, which remain invariant across different circum-
stances [22]. In recent years, causality (or causal inference)
has attracted considerable attention, especially in improving
the model generalization and explainability [21], [22], [23].
However, to the best of our knowledge, there is scarcely
any research in power systems that involves causal inference,
even though a great deal of studies intersect with machine
learning.

With the aim of bridging the aforementioned research gap,
we propose a novel method based on causal inference to build
generalization-improved short-term load forecasting models.
Specifically, we first analyze input features of existing methods
from the causality view, and innovatively design and introduce
load characteristics as extra model input. Then, we resort to the
causal graph to scrutinize the causality in models and identify
the confounder that brings bad effects to model generalization.
Next, we utilize the do-calculus and backdoor adjustment
for causal intervention via observational data, which removes
spurious correlation caused by confounder. Finally, we propose
a novel load forecasting framework combined with the load
characteristic extraction, characteristic pool approximation and
characteristic-injected model, to implement the causal inter-
vention. To the best of our knowledge, we are the first to
utilize causal inference for load forecasting. Compared with
the published literature, our contributions are threefold:

1) We create a new paradigm based on causal inference to
construct generalization-improved models for short-term
customer load forecasting. Different from existing meth-
ods, we build forecasting models by relying on causality
rather than correlation, where the load characteristics
are designed and injected as an extra model input.
In addition, the causal intervention with do-calculus is
applied to eliminate spurious correlations induced by the
confounder, which guarantees the model’s generaliza-
tion.

2) We propose a novel load forecasting framework to
realize the causal intervention using only observational
data. A characteristic-injected model is designed to
perform load forecasting with load characteristics, which
are extracted from historical loads by a well-designed
extraction task and model. Moreover, a characteristic
pool approximation is developed to compute do-calculus
efficiently.

3) We validate that our proposed method can improve
model generalization from a data perspective, rather than
designing complex models. Furthermore, compared with
most existing model-specific methods, our proposed
method is model-agnostic and can be applied to different
load forecasting models to improve their model gener-
alization.

The remainder of this paper is structured as follows.
Section II describes the load forecasting task and generaliza-
tion issues involved. Sections III and IV unveil full details
of the proposed method. Section V validates the effectiveness
and superiority of our proposed method. Section VI concludes
this paper.

II. PROBLEM STATEMENT

We begin with the introduction of notations and definitions.
Let X denote a feature space and Y an output space.
Similarly, X and Y are random variables of feature and output,
respectively. We denote the data sample with feature and
output as (x, y) and the corresponding joint distribution as PXY .
Accordingly, the domain that is composed of data sampled
from the joint distribution of feature and output, is denoted as
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D, i.e., D = {(xi, yi)}ni=1 ∼ PXY , where x ∈ X , y ∈ Y , and n
the number of data samples. In this paper, each customer with
loads and features constitutes a domain.

A. Load Forecasting

Load forecasting is a typical time-series forecasting issue,
which predicts future values of electricity loads. The machine
learning methods realize load forecasting by exploiting the
relationship between input features and future loads [24].
Specifically, these features usually include target observations
(i.e., historical loads) and exogenous factors (e.g., date and
forecasted weather). Formally, this can be expressed as:

y = f (x; θ), (1)

where f (·; θ) is the machine learning model with parameters
θ . Here, x and y represent the input features and forecasted
loads. Note that we focus on day-ahead forecasting in this
paper, i.e., y contains the entire load profile for the next day.

The machine learning models aim to learn the general
and predictive knowledge from training data, and then apply
the well-trained model to new data. Therefore, the objective
function of load forecasting models is formulated as:

min
θ

E(x,y)∼PXY

[
�(f (x; θ), y)

]
, (2)

where � is the loss function, which quantifies the discrepancy.

B. Generalization Issue

Machine learning methods usually require that the training
and test data satisfy the assumption of being independently
and identically distributed. However, this assumption does not
always hold in reality, which leads to the model performance
deterioration due to data distribution gaps [20]. It is commonly
known as the model generalization issue. Particularly, this is
more likely to happen with customer load data, which is highly
heterogeneous and vulnerable to the environment [25], [26].

Suppose we have M customers for model training Dtrain =
{(xj

i, yj
i)}nj

i=1 | j = 1, . . . , M}, where nj is the data amount
of the j-th customer, and the joint probability distribution
varies for each domain due to the load heterogeneity, i.e.,
Pi

XY �= Pj
XY , i �= j. In this paper, we broadly classify the

model generalization issue into the following two scenarios,
according to how the data distribution gap arises:

1) Unseen Customer: Typically, we can not acquire load
data from all possible customers to train data-driven models,
because it is expensive and even prohibitively impossible.
Therefore, there will be the data distribution gaps between the
training and other customers. A good load forecasting model
is supposed to be capable of generalizing to customers who
did not participate in model training, i.e., unseen domains
Dunseen = {(xj

i, yj
i)}nj

i=1 | j = M + 1, . . . , M′}. Here, M′ is the
new number of customers considering the unseen customers,
where the total number of unseen customers is M′ −M.

2) Distribution Drift: Since electricity loads are vulnerable
to time, weather and social behavior, their data distribution
will inevitably vary. Specifically, customers’ load consumption
habits change over time in unforeseen ways, e.g., appliance

upgrades and weather fluctuation. This will result in distribu-
tion gaps between the training and real-time data for the same
customer, termed as distribution drift in this paper. Similarly,
the load forecasting model should be able to generalize to
customers with distribution drift, i.e., drift domains Ddrift =
{(xj

i, yj
i)}

n′j
nj+1 | j = 1, . . . , M}. Here, n′j denotes the new data

amount of the j-th customer, which means the customer’s
increased data amount over time is n′j − nj.

C. Design Goal

Our goal is to build a generalizable load forecasting model
by using training domains to realize a minimum forecasting
error on all possible domains, which can be formulated as:

min
θ

E(x,y)∈Dall

[
�(f (x; θ), y)

]
, (3)

where Dall denotes all possible domains, i.e., Dall = Dtrain ∪
Dunseen ∪Ddrift, and Dtrain ∩Dunseen ∩Ddrift = ∅.

III. CAUSAL INFERENCE-BASED PARADIGM FOR MODEL

GENERALIZATION IMPROVEMENT

In this section, we elaborate the proposed paradigm based
on causal inference for model generalization improvement. We
first explore the correlation and causality in existing models.
Then, we raise load characteristics and inject them as model
extra input, followed by the dissection from a causal view.
Finally, we reveal the causal intervention with do-calculus.

A. Analysis of Correlation and Causality in Load
Forecasting

To understand how data distribution gaps degrade load
forecasting performance, we investigate existing machine
learning-based methods, especially those based on deep learn-
ing. Since machine learning is built on statistical theory,
most methods learn and exploit the statistical correlations
between the input features and output for load forecasting [27].
However, these statistical correlations are unstable mapping
relationships, in other words, highly dependent on training
data. In this way, many machine learning-based methods
have been shown to be successful when the test and training
data come from the same distribution. Unfortunately, the
distribution gap between them is often unavoidable in real
applications, which is bound to result in instability and
degeneration of model performance.

Unlike correlation, causality is a stable mapping because it
portrays intrinsic (i.e., cause-and-effect) relationships between
input features and outputs, rather than statistical relationships
[28]. Theoretically, the causality is independent of the specific
data, thus making it suitable for the data distribution gap
problem. It should be noted causality is a special kind of corre-
lation, so we can exploit it to improve the model generalization
based on existing correlation-based load forecasting methods.

According to the existing studies, there are three main cate-
gories of input features involved in short-term load forecasting,
as shown in Figure 1(a): time (e.g., hour and day-of-week),
weather (e.g., temperature and humidity), and electricity (e.g.,
historical loads and related statistical values). For the first two
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categories, their causal effects on future loads are apparent
and intuitive. For example, date or temperature has a direct
decisive impact on future load consumption but not vice
versa. This indicates that time and weather features are the
cause, while the future load is the corresponding effect.
However, things take a turn for the last category, since it is
unreasonable if we say historical loads can determine future
loads. On the contrary, historical loads have some statistical
relationships with future loads, which is correlation instead of
causality. Therefore, the performance instability stems from
these correlations.

B. Causal View of Load Forecasting With Load
Characteristics

Since the knowledge of electricity features is indispensable
in load forecasting, we need new causal items to replace the
correlation one (i.e., historical loads). Inspired by load patterns
that provide qualitative insights into customer load habits,
we expect to find quantitative content with similar function-
ality, which we call load characteristics. Specifically, load
characteristics are implicit features of customers’ load habits,
which can depict their impact on electricity consumption loads.
Unlike load patterns with qualitative descriptions, load charac-
teristics can serve as model inputs for calculation because of
their qualitative nature. In addition, since load characteristics
can not be obtained directly in accordance with the available
data, we design an extraction task and model to extract them
from historical loads. With the great representation ability of
neural networks in time-series data, load characteristics can
be precisely distilled from corresponding historical loads by
the extraction model via the extraction task (see details in
Section IV-A). Once customers’ load habits are grasped by
load characteristics, it is natural to determine customers’ future
loads. Therefore, we believe that load characteristics have
causal effects on future loads, rather than correlation.

Considering that load characteristics are derived from the
historical loads, there is ineluctably information loss during
extraction processes. It is important to mention that historical
loads may contain other causal information beneficial to load
forecasting except for load habits, e.g., socio-demographics.
Furthermore, with the high computational capability of deep
learning models, redundancy is better than deficiency in terms
of input data [29]. Hence, we still retain historical loads as
the model input, instead of discarding them directly. In other
words, we introduce load characteristics as an additional input
on the basis of input features in existing methods.

After injecting load characteristics, we resort to the causal
graph [28] for qualitative analysis, which is a directed acyclic
graph. Specifically, we scrutinize the causality in the model
and build up a causal graph, as indicated in Figure 1(b), where
each node denotes a type of input features. In particular,
• Node T denotes the time features, including the hour,

date, and day-of-week of target future loads.
• Node W denotes the weather features, such as temperature

and humidity data from the weather forecast.
• Node H denotes the historical loads, such as load records

of seven days prior to the target day.

Fig. 1. Causal graphs of load forecasting models: (a) traditional methods;
(b) inject load characteristics as an additional input; (c) apply causal inter-
vention after injection to remove spurious correlation. T: time features, W:
weather features, H: historical loads, Y: future loads, Z: load characteristics.

• Node Z denotes the load characteristics extracted from
historical loads, i.e., z = g(x), where g(·) is the extraction
model. Note that the load characteristics extraction and
load forecasting tasks are performed independently.

• Node Y denotes the future loads of the target day.
On the other hand, an edge in the causal graph describes

a causation between variables, e.g., T → Y represents that T
has a causal effect on Y . In particular,
• Edge {T, W, H} → Y represents that future loads Y are

determined by three factors: time features T , weather
features W, and historical loads H, which are widely
used in existing load forecasting methods. To emphasize,
we preserve the cause node H to avoid discarding the
possible latent causal effects on Y in historical loads.

• Edge Z → {H, Y} represents that load characteristics Z
can decide both the historical and future loads, because Z
embodies the customer’s load consumption habits. This
is easy to comprehend: regardless of the past or future,
customers’ electricity consumption is determined by their
load habits, and the difference is only whether it has
already happened or not. That is why we inventively add
a cause node Z to enhance the model generalization.

From the causal graph, we discover that load characteristics
Z is a confounder [28] that affects both H and Y . This results
in two causal paths starting from Z to Y , i.e., Z → Y and
Z → H → Y . The first path is what we expected, while the
second path goes beyond our initial intention. This is because
we expect H provides additional causal effects on Y , rather
than further propagating or amplifying causal effects of Z on
Y . Moreover, the path Z→ H→ Y reveals the effect of H on
Y is influenced by the value of Z, i.e., conditional on Z.

Formally, for most existing load forecasting methods, we
formulate them as the conditional probability P(Y|T, W, H),
and then derive it by the following steps:

P(Y|T, W, H)
(1)=

∑

z∈Z
P(Y, z|T, W, H)

(2)=
∑

z∈Z
P(Y|T, W, H, z) P(z|T, W, H)

(3)=
∑

z∈Z
P(Y|T, W, H, z) P(z|H)

(4)=
∑

z∈Z
P(Y|T, W, H, z) P(H|z) P(z), (4)
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where Z denotes the sample space of load characteristics. In
particular, (1) follows the law of total probability; (2) and (4)
obey the Bayes’ theorem; and (3) holds because T and W are
independent to Z according to the causal graph.

It is worth mentioning that there lays a special term P(H|z)
in Eq. (4). Suppose that historical loads h1 and h2 both
correspond to the load characteristics z, where h1 is common
and h2 is uncommon. In this way, given the identical value of
time and weather features, h1 will have more influence than h2
on the forecasting model P(Y|T, W, H), since P(h1|z) is larger
than P(h2|z). In other words, most existing methods pay too
much attention to common load data than it deserves, even
though forecasting models are expected to treat every historical
load data fairly and equally. Consequently, P(Y|T, W, H) will
favor the load forecasting under the common load consumption
scenarios and be weak in uncommon ones. As a result, the data
distribution gaps of historical loads are improperly amplified
by P(H|z), which results in the low model generalization.

C. Causal Intervention With Do-Calculus for Confounder

According to the causal theory [28], Z leads to a spurious
correlation between H and Y , i.e., H ← Z → Y . In this
way, the total correlation between H and Y is made up of
both ‘favorable’ causal correlation and ‘harmful’ spurious
correlation. Moreover, this spurious correlation will weaken
the stability of model performance [22], which is contrary to
our goal. Therefore, Z→ H needs to be eliminated in the load
forecasting model since it brings the bad effect.

To remove the spurious correlation, we consider building a
load forecasting model that is immune to the impact of Z →
H. Intuitively, if we can arbitrarily manipulate customers’ load
behaviors to randomly produce actual consumption loads (also
called randomized experiments [28]), the historical loads H
are free from load characteristics Z. Under this circumstance,
H is completely controlled by our manipulation instead of
other factors, which means that Z → H no longer exists and
accordingly there is no confounder and spurious correlation.
However, the feasibility of this approach is quite low, because
no one has the authority to forcibly intervene in customers’
load consumption behaviors, especially academic researchers.
Hence, it is impossible to implement randomized experiments
and then recollect intervened data for model training.

Thanks to the progress in causal science, we can get rid of
the performing intervention issue by adopting the do-calculus
[28], which achieves the same effects using observational
data. Formally, do(H) denotes removing the impact of H’s
parent nodes, i.e., cutting off the edge Z→ H in Figure 1(b).
Specifically, performing do(H) blocks the effect of Z on
H, as shown in Figure 1(c). In this way, we formulate our
load forecasting model as P(Y|T, W, do(H)), and then derive
it according to the backdoor adjustment formula [28], as
follows:

PG(Y|T, W, do(H))
(1)= PG′(Y|T, W, H)

(2)=
∑

z∈Z
PG′(Y|T, W, H, z) PG′(z|T, W, H)

Fig. 2. The causal intervention-based load forecasting framework.

(3)=
∑

z∈Z
PG′(Y|T, W, H, z) PG′(z)

(4)=
∑

z∈Z
PG(Y|T, W, H, z) PG(z), (5)

where G and G′ represents the causal graphs in Figures 1(b)
and 1(c), respectively. The only difference between G and G′
is whether the causal intervention is performed. PG′ denotes
the probability evaluated on G′. For the sake of clarity, we
will henceforth substitute P for PG. To better comprehend, we
also explain the derivation in Eq. (5) step by step:
• (1) is based on backdoor criterion, as do(H) blocks the

only backdoor path H← Z→ Y;
• (2) obeys the law of total probability and Bayes’ theorem;
• (2) is because node Z has no dependent variables;
• (4) holds since the causal mechanism {T, W, H, Z} → Y

is consistent on both G and G′, which is same for P(z).
According to Eq. (5), causal intervention with do-calculus

(i.e., P(Y|T, W, do(H))) can be equivalently realized with
observational data by calculating P(Y|T, W, H, z) and P(z).
Furthermore, compared with Eq. (4), the evil term P(H|z) is
removed, which ensures each sample of H has the equivalent
weight. This makes sense because the load habit information
is already represented by Z, so there is no need to favor one or
a group of H as most existing methods. It is worth noting that
our load forecasting model can have stable performance even
when data distribution gaps exist. This is because the model
has seen multiple possible values of Z during training stages,
through the mathematical expectation of P(Y|T, W, H, z).

IV. CAUSAL INTERVENTION-BASED LOAD FORECASTING

FRAMEWORK

According to the aforesaid theoretical analysis, the model
generalization can be enhanced by injected load characteristics
and causal intervention with do-calculus. From Eq. (5), we
need to first extract the load characteristics Z from historical
loads H, then perform the load forecasting P(Y|T, W, H, z)
with additional Z, and finally estimate P(Y|T, W, do(H)) based
on

∑
z P(Y|T, W, H, z) P(z). Therefore, we propose a causal

intervention-based load forecasting framework to implement it,
as shown in Figure 2. Specifically, there are mainly three parts
in the framework: load characteristic extraction, characteristic
pool approximation and characteristic-injected model, which
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Algorithm 1: Causal Intervention Load Forecasting
Input : The model parameters θ , historical load dataset

Dload, result dataset Dy, weather feature dataset
Dweather, time feature dataset Dtime, batch size B,
training epoch number E, Adam algorithm
parameters αAdam, β1, β2.

Output: The well-trained load forecasting model f (·; θ)
1 Initialization:
2 Train the characteristic extraction model g(·;ω1) as per Algorithm 2;
3 Construct the load characteristic pool P by sampling historical data

from Dload and then extracting load characteristics with g(·;ω1);
4 Procedure:
5 for e = 1, . . . , E do
6 for each batch of training data do
7 Sample B historical loads h ∼ Dload and output results

y ∼ Dy, and select the corresponding weather and time
features w ∼ Dweather, t ∼ Dtime;

8 for i = 1, . . . , B do
9 Extract the load characteristic zi ← g(hi;ω1);

10 Find similar load characteristics of zi from P, and build
approximate set Ẑ ′i = {zi, z1

i , . . . , zn
i , . . .};

11 Calculate zi’s approximate form ẑi ← 1
|Ẑ ′i |

∑|Ẑ ′i |
j=0 zj

i;

12 Perform load forecasting ŷi ← f (ti, wi, hi, ẑi; θ);
13 Calculate the model’s loss L(i) ← ‖ŷi − yi‖2;
14 end
15 Update model’s parameters based on Adam algorithm

θ ← Adam(∇θ
1
B

∑B
i=1 L(i), αAdam, β1, β2);

16 end
17 end

18 return θ

will be expounded successively in the following. In addition,
the implementation details of the proposed load forecasting
framework are summarized in Algorithm 1.

A. Load Characteristic Extraction

Since customers’ load habits can decide their load consump-
tion, we expect load characteristics that represent load habits
to expose electricity loads. Here, we design an extraction task
to realize it, whose goal is to recover the corresponding load
profiles via extracted load characteristics. In more detail, we
believe that the extracted load characteristics hold the key
information of historical loads, if recovered loads are close to
real loads. Formally, the extraction task’s objective is as:

min‖(g′(z;ω2)− h
) ‖22, where z = g(h+ ε;ω1), (6)

where g(·;ω1) and g′(·;ω2) denote the characteristic extrac-
tion and load recovery models; h and z represent the values
of H and the corresponding Z. The noise ε prevents g and g′
from degenerating into the linear mapping model.

To accomplish the extraction task, we exploit the encoder-
decoder architecture [30], where the encoder distills load
characteristics and the decoder accordingly restores load pro-
files. Moreover, we adopt Transformer model [30] to deal with
load data with complex temporal dependencies. In crude terms,
the Transformer can focus on relevant parts and ignore useless
contents by virtue of the attention mechanism [30]. This lays
the foundation for our extraction model to distill key valuable
information from historical loads. In particular, we build our
extraction model based on the implementation in [31], and

Algorithm 2: Load Characteristic Extraction
Input : The characteristic extraction model parameters ω1, load

recover model parameters ω2, historical load dataset Dload,
batch size B, training epoch number E, Adam algorithm
parameters αAdam, β1, β2.

Output : The trained characteristic extraction model g(·;ω1).
1 Procedure:
2 for e = 1, . . . , E do
3 for each batch of training data do
4 Sample B load profiles h ∼ Dload and noises ε ∼ N (0, I);
5 Extract the load characteristics z = g(h+ ε;ω1), and then

recover the load profiles g′(z;ω2);
6 Calculate batch loss L← 1

B
∑

B ‖g′(z;ω2)− h‖;
7 Update two models’ parameters based on Adam algorithm

ωi ← Adam(∇ωi L, αAdam, β1, β2), i = 1, 2;
8 end
9 end

10 return ω1

the model training procedure is presented in Algorithm 2. In
consequence, we omit the exhaustive description of the load
characteristic extraction model architecture here.

B. Characteristic Pool Approximation

Because the sample space of Z is theoretically infinite, the
calculation of

∑
z∈Z P(Y|T, W, H, z) P(z) is intractable [32],

especially for high heterogeneity of customer loads. To address
this issue, we devise a characteristic pool for approximation,
which consists load characteristics extracted from customers’
historical loads. Therefore, we can estimate Eq. (5) as follows:

P(Y|T, W, do(H)) ≈
∑

z∈Z ′
P(z)f (T, W, H, z), (7)

where Z ′ is the load characteristics set from the characteristic
pool, and f is the load forecasting model in Section IV-C.

However, Eq. (7) remains difficult to compute as there are
a large number of possible values in Z ′. Therefore, we derive
an efficient approximation to convert the outer summation into
the calculation in model f . To be specific, given a historical
load h and the corresponding load characteristics z, we use the
clustering algorithm (e.g., KNN) to select similar values of z
from the designed characteristic pool. Then, we construct the
approximate set of Z ′ by these similar characteristics. Next,
we calculate the average of Z based on the approximate set.
Consequently, Eq. (5) can be approximately expressed as:

P(Y|T, W, do(H)) ≈ f

⎛

⎝T, W, H,
∑

z∈Ẑ ′
zP(z)

⎞

⎠. (8)

where Ẑ ′ = {z, z1, . . . , zn, . . .} is the approximate set of Z ′.
To judge the approximation effect in Eq. (8), we exploit the

Jensen gap [33] to measure the approximation error δ:

δ = |Ez[f (T, W, H, z)]− f (T, W, H,Ez[z])|, (9)

where Ez displaces the summation operation for clarity.
Theorem 1: If f : I → R, where I is a closed subset of R

and μ ∈ I, satisfies the conditions: 1) f is bounded on any
compact subset of I; 2) |f (x)− f (μ)| = O(|x−μ|α) at x→ μ

for α > 0; 3) |f (x)| = O(|x|n) at x → ∞ for n ≥ α. Then
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Fig. 3. The architecture of the proposed load forecasting model.

for a random variable X with probability distribution P and
expectation μ, the inequality holds:

|E[
f (X)− f (μ)

]| ≤ M
(
σα

α + σ n
n

)
,

where M = supx∈I/μ
|f (x)−f (μ)|
|x−μ|α+|x−μ|n does not depend on the

probability distribution P; and σn = n
√
E[|X − μ|n].

Proof: Refer to [33] for detailed proof.
It can be proven that most deep learning models including

our proposed model f (·), satisfy conditions in Theorem 1,
and the upper bound is small [34]. Therefore, according
to Theorem 1, there is also a small upper bound of δ,
especially when the distribution of Z ′ concentrates around
its expectation, thus guaranteeing the approximation effect of
Eq. (8).

C. Load Characteristic-Injected Load Forecasting Model

According to Eq. (8), the load forecasting model is supposed
to receive four types of features as input, i.e., time, weather,
historical loads, and corresponding load characteristics, which
differs from most existing methods. To this end, we propose
a characteristic-injected load forecasting model, which utilize
the attention mechanism since input features are time-series.
Specifically, the proposed model is composed of three main
modules: embedding module, fusion module, and forecasting
module, which is illustrated in Figure 3. These three modules
are revealed in turn below. Besides, the generalization bound
proof of the proposed model can be found in the Appendix.

1) Embedding Module: For better data representation, we
apply the embedding transformation to input features. Since
time features t are qualitative (e.g., date), we convert them into
computable vectors xt via one-hot encoding function [35]:

xt = FC
(
OneHot(t)

)
, (10)

where FC(·) denotes the fully-connected layer. Furthermore,
although the weather features w are quantitative data, we also
embed them into xw to enhance their information capacity:

xw = FC(w) + PE
(
FC(w)

)
, (11)

where PE(·) represents the positional encoding function that
provides relative sequence information [30]. Moreover, since
there is only one value at each time point in historical loads
h, we employ the fully-connected layer for data embedding:

xh = FC(h) + PE
(
FC(h)

)
, (12)

where xh is the embed vector of h. Besides, load characteristics
z are also converted into xz by fully-connected layers.

2) Fusion Module: After performing the data embedding,
we need to integrate these features that contain different types
of information for load forecasting. Moreover, since the load
characteristics Z are extracted from historical loads H, it is
necessary to blend them in a non-redundant manner, otherwise
it may degrade the model performance. For this purpose, we
design the fusion block Fusion(·), which employs the attention
mechanism and residual connection for better feature fusion:

Fusion(x1, x2) = FC
(
MHSA(x12)⊕ x12

)

where x12 = FC
(
Concat(x1, x2)

)
, (13)

where MHSA(·) denotes the multi-head self-attention function
[30]; Concat(·) and ⊕ represent the vector concatenation and
element-wise addition operators [36]. Symbols x1 and x2 are
two example features to be fused. According to the feature
types, the model inputs can be classified into load-relevant (H
and Z) and load-irrelevant (T and W). To better dig out feature
information and combine them, we adopt a hierarchical route
based on Fusion(·). Specifically, we first internally merge the
load-relevant and load-irrelevant features separately, and then
integrate them to obtain the final fusion feature xfusion:

xfusion = Fusion3
(
Fusion1(xt, xw), Fusion2(xh, xz)

)
, (14)

where Fusion1, Fusion2, and Fusion3 are three fusion blocks
with different parameters, respectively.

3) Forecasting Module: Considering that we focus on day-
ahead load forecasting here, the model needs to output the load
sequence of the whole day. To handle time-series relationships,
we utilize Transformer once again, where the encoder taps into
valuable information from xfusion and the decoder reconstructs
them into target loads. Thus, the model output y is written as:

y = FC

(
TranDec

(
TranEnc

(
PE(xfusion)

)))
, (15)

where TranEnc(·) and TranDec(·) are the encoder and decoder
of Transformer, which are implemented with reference to [31].

V. CASE STUDIES

A. Experiment Settings

1) Dataset: We choose smart meter data from Low Carbon
London program for the experiments, which includes half-hour
electricity loads of more than 5000 customers [37]. After data
preprocessing, we retain 375 customers with complete load
data from August 1, 2012, to February 27, 2014. To improve
the dataset diversity, we randomly select and aggregate 10 cus-
tomers each time, and finally obtain 200 aggregated customers.

In order to construct the generalization scenarios in
Section II-B, we first randomly select 180 aggregated cus-
tomers with full data from August 2012, to July 2013 (365
days in total) as training dataset. Then we pick all load data
from August 2013 to February 2014 (211 days in total) of these
180 aggregated customers, as test dataset for the distribution
drift scenario. Finally, we use the rest 20 aggregated customers
with a total of 576 days as test dataset for the unseen customer
scenario.
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TABLE I
IMPLEMENTATION DETAILS OF CASE STUDIES

2) Implementation: We implement the proposed method
with the open-source machine learning framework PyTorch,
and employ the Adam algorithm [38] with mini-batch scheme
for model training. Moreover, all experiments are conducted
on an Ubuntu 18.04 LTS platform, which is equipped with the
Intel Core i9-10980XE CPU and NVIDIA GeForce RTX 3090
GPU. The implementation details are summarized in Table I.

3) Benchmarks and Metrics: To verify the effectiveness
and superiority of our proposed method, we select the
following six benchmarks from state-of-the-art studies for
comparison:
• B1: A convolutional LSTM-based neural network with

selected autoregressive features proposed in 2021 by
Li et al. [39] to improve short-term forecasting accuracy.

• B2: A hybrid deep learning model combining LSTM
and self-attention mechanism proposed in 2021 by
Zang et al. [40] for day-ahead residential load forecasting.

• B3: An online adaptive RNN-based method with contin-
uous learning proposed in 2021 by Fekri et al. [41] to
handle newly arriving data and adapt to new patterns.

• B4: An adaptive sparse attention network proposed in
2023 by Deng et al. [42] to increase the anti-interference
ability for electric load forecasting.

• B5: An online-offline deep kernel learning with deep
soft Spiking Neural Networks proposed in 2023 by
Li et al. [18] to address the high uncertainty of residential
loads.

• B6: A temporal data pooling framework with recurrent
deep embedding and meta-initialization proposed in 2022
by Yang and Youn [19] to achieve the robust accuracy
under concept drift for short-term individual load fore-
casting.

In addition, to evaluate the load forecasting effect, we adopt
three common performance metrics: RMSE, MAE and MAPE.

B. Performance Comparison With Load Forecasting Methods

In this part, we validate the load forecasting performance
of our proposed method in two generalization scenarios. For
brevity, we denote unseen customer scenario as Scenario A
and distribution drift scenario as Scenario B. As stated in
Section V-A1, since the time period of the test dataset for
Scenario B lasts for 7 months, we believe that there is the
distribution drift in these test data. Besides, the aggregated
customers combined from individuals randomly, facilitate to
simulate Scenario A, because their load patterns have com-
monalities but are not identical. Therefore, we believe the test

Fig. 4. Examples of load forecasting effect under Scenario A. Each figure
represents a single day’s load profiles for each unknown customer.

datasets are representative of two generalization scenarios. To
comprehensively verify the proposed method, we compare its
performance with the above benchmarks. Moreover, we repeat
all experiments 5 times to avoid interference errors and get
average outcomes.

Table II summarizes the performance comparison results.
It can be observed that our proposed method outperforms all
benchmarks in Scenario A, with the MAPE of 9.03%. This
consequence also holds true in Scenario B, where the MAPE
is within 8.44%. Specifically, compared with all benchmarks,
the decline ranges of our proposed method in Scenario A
vary from 37.1% to 66.5% and from 34.7% to 69.9% in
terms of RMSE and MAE, respectively. A similar situation
occurs in Scenario B, even to a greater extent, e.g., the RMSE
reduction rate of the proposed method is between 42.2%
to 70.9%, and MAE between 37.2 to 71.9%. It should be
noted that all evaluation metrics of our proposed method
in Scenario B are lower than those in Scenario A, which
also basically applies to all benchmarks. We believe it is
reasonable because the data distribution gap incurred by the
distribution drift should be relatively smaller than the unknown
customer. Furthermore, for benchmarks that consider model
generalization (B5 and B6), their forecasting performance is
significantly improved compared to other benchmarks, where
the MAPEs are reduced at least 0.98% and 1.03% in two
scenarios. However, although B5 and B6 enhance the model
generalization ability from the model perspective (i.e., increase
model complexity), their RMSE and MAE are still on average
0.73 kW and 0.59 kW higher than our proposed model. This
indicates the effectiveness and necessity of improving model
generalization from the data perspective, which is exactly
adopted in the proposed method.

To intuitively inspect the performance improvement of our
proposed method, we provide a visual demonstration of load
forecasting compared with benchmarks. As for Scenario A, we
first randomly select four customers from the corresponding
test dataset, and then pick up their one-day load profile
as examples. We only display forecasting results by our
proposed method and best benchmark for the sake of brevity,
as shown in Fig. 4. It is clear our proposed method achieves
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TABLE II
NUMERICAL RESULTS OF PERFORMANCE COMPARISON FOR LOAD FORECASTING METHODS UNDER TWO SCENARIOS

Fig. 5. Examples of load forecasting effect under Scenario B. Each row
represents two daily load profiles for each customer (left column: before
distribution drift; right column: after distribution drift).

good forecasting effects, regardless of the pattern of real
load profiles. In contrast, the benchmark suffers performance
fluctuation due to the generalization issue. According to these
examples, the accuracy and stability of our proposed method
are verified.

Similarly, we also choose three customers for Scenario
B at random, and select their daily load profiles from the
training and test dataset as examples, respectively. Fig. 5
illustrates the impact of distribution drift in load forecasting.
Specifically, for load profiles prior to the distribution drift
event, our proposed method and benchmark can both realize
accurate forecasting, reflected in the left column of Fig. 5.
However, when distribution drift occurs (the right column),
the benchmark shows performance degradation while our
proposed method maintains a small forecasting error as before.
Considering the stochastic nature of distribution drift, this
stable performance further validates the generalization of our
proposed model.

TABLE III
NUMERICAL RESULTS OF PERFORMANCE COMPARISON WITH THE

STATE-OF-THE-ART TIME SERIES FORECASTING METHODS

C. Performance Comparison With State-of-the-Art Domain
Generalization Methods

In this part, we further verify the superiority of our proposed
method by comparing it with advanced domain generalization
methods. Specifically, we select four state-of-the-art studies
for time series forecasting as benchmarks, as follows:
• B7-1: A gradient interpolation-based model with

time-sensitive parameters proposed in 2021 by
Nasery et al. [43] to allow the decision boundary to
change along time.

• B7-2: An attention-based shared module using domain-
invariant latent features proposed in 2022 by Jin et al. [44]
to enable joint training on source and target domains.

• B7-3: A temporal domain generalization with drift-aware
dynamic neural network framework proposed in 2023 by
Bai et al. [45] to predict in the future without future data.

• B7-4: A domain discrepancy regularization-based time
series model proposed in 2024 by Deng et al. [46] to
enforce consistent performance across different domains.

To ensure a consistent comparison, we use the same
dataset of generalization scenarios described in Section V-A1.
Similarly, all numerical experiments are repeated 5 times to
prevent human interference, and we calculate the average value
as the results. Moreover, we combine the forecasting results
of two scenarios for demonstration, which are presented in
Table III.

It can be seen that our proposed method achieves the best
prediction performance, with MAPE within 8%. Although
these advanced methods have made progress compared to
other benchmarks (i.e., B1–B6), they are still inferior to our
proposed model. Specifically, on the basis of the proposed
model, there is at least a rise of 14.7% and 11.3% for these
four benchmarks in terms of RMSE and MAE, respectively.
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Fig. 6. The performance improvement of benchmarks from load forecasting studies (i.e., B1–B6) by adopting the components in our proposed framework.
Improved A: only inject load characteristics as extra model input; Improved B: inject load characteristics and apply characteristic pool approximation.

Moreover, the forecast error percentage (MAPE) is also
increased by up to 15.3%. Despite this, both benchmarks
and our proposed method exhibit good performance in load
forecasting, where each of their MAPEs falls within 9.2%.
However, our proposed method is the only one that can reach
a MAPE within 8%, and its RMSE and MAE are controlled
within 1 kW and 0.9 kW. Therefore, this comprehensive
comparison further validates the effectiveness and superiority
of our proposed method.

D. Forecasting Performance Improvement of Benchmarks

In this part, we conduct the ablation study to explore the
impact of each component in our proposed framework on the
model performance, which further demonstrates the effective-
ness of the proposed method. According to the introduction
in Section IV, there are mainly three parts in our proposed
framework: 1) load characteristic extraction; 2) characteristic
pool approximation; 3) characteristic-injected load foresting
model. Since the first two parts are model-agnostic that can
be applied to different models, we apply them to bench-
marks sequentially to explore their importance differences.
Specifically, we first add load characteristics as an additional
input of benchmarks (denoted as Improved A), and compare
its performance with the original form of benchmarks. On
this basis, we continue to add the characteristic approximation
to benchmarks (denoted as Improved B), and analyze its
impact on load forecasting performance. In addition, we
discern the efficacy of the proposed model by replacing it in
our framework with benchmarks. Note that we conduct the
experiment under two scenarios, and blend the forecasting
results to calculate average values.

Fig. 6 visually displays the performance improvement of all
benchmarks by using components from our proposed method.
It can be easily seen that after injecting load characteristics
as extra input, benchmarks’ evaluation metrics show a certain

decline, with a maximum reduction in MAPE of 1.2%. This
proves that introducing causal items (i.e., load characteristics)
as model inputs is beneficial to improve model generalization.
When we further apply the characteristic approximation to
benchmarks, there is a significant improvement in forecasting
accuracy. In particular, compared to solely adding load char-
acteristics, the RMSE and MAE are reduced by an average
of about 26.8% and 28.9%, respectively. This may be because
benchmarks are no longer disturbed by spurious correlations,
with the help of the characteristic approximation. Moreover,
the performance stability of benchmarks has a greater enhance-
ment after adding the characteristic approximation, where
the standard deviation of all metrics shows a more substan-
tial decline. Therefore, the characteristic approximation (i.e.,
causal intervention with do-calculus) makes more contribution
to the model generalization improvement.

After employing the first two components of the proposed
framework, all benchmarks make great strides in model
performance. Taking B6 as an example, with the load char-
acteristics and characteristic approximation, its RMSE and
MAE are both within 1.1 kW as well as its MAPE is
around 8.8%, which is a dramatic diminution from the original
version. However, its evaluation metrics are still inferior to
those of our proposed method. Specifically, the performance
discrepancies between B6 and the proposed method are 0.15
kW, 0.13 kW, and 1.38% in terms of RMSE, MAE, and
MAPE, respectively. This indicates that the characteristic-
injected model also contributes to addressing generalization
issues, especially the fusion module for integrating input
features. Therefore, the effectiveness and superiority of our
proposed method are further demonstrated.

VI. CONCLUSION

In this paper, we concentrate on short-term customer load
forecasting with model generalization issues. Owing to the

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 16,2025 at 06:23:30 UTC from IEEE Xplore.  Restrictions apply. 



434 IEEE TRANSACTIONS ON SMART GRID, VOL. 16, NO. 1, JANUARY 2025

heterogeneity and stochasticity of customers’ electricity loads,
existing machine learning-based load forecasting methods
encounter serious challenges of performance degradation. To
address this problem, we propose a causal inference-based
method to build the generalization-improved load forecasting
models. Specifically, we introduce load characteristics as extra
input with causality, and exploit the causal intervention with
do-calculus to remove spurious correlations for generalization
improvement. Furthermore, we propose a novel load forecast-
ing framework to efficiently implement the causal intervention
using only observational data. Case studies comprehensively
validate that the proposed method outperforms all benchmarks
from the state-of-the-art studies in two generalization sce-
narios. The RMSE and MAE of our proposed method are
controlled within 1 kW and 0.9 kW, and its MAPE is the only
method within 8%. Moreover, the performance improvement
of benchmarks can reach up to within 1.1 kW for both RMSE
and MAE. This further demonstrates that our proposed method
can be applied to different load forecasting models.

With the penetration of distributed energy resources, the
actual load profiles recorded by smart meters will be affected
by renewable generation, which will further exacerbate the
distribution drift of load data. Therefore, it is necessary
to make our proposed method adaptable to customers with
renewable generation, which will be considered in our future
work. In addition, since it is difficult to identify causality
between variables, we intend to design the causal discovery
method to efficiently find causal terms in the future.

APPENDIX

GENERALIZATION BOUND PROOF

This Appendix provides a theoretical analysis and proof
of the generalization bound for our proposed method. In this
paper, we focus on the short-term customer load forecasting
task, which is formulated in Eq. (1). Hence, the model
prediction error can be written as follows:

R(f ) = E(x,y)∼PXY

[
�(f (x; θ), y)

]
, (16)

where R(f ) is called the generalization risk, which is the model
prediction error on the overall dataset. However, the overall
dataset is not available, so we usually use the model prediction
error on the training dataset as an approximation:

R̂(f ) = 1

|D|
|D|∑

i=1

[
�
(
f (xi; θ), yi

)]
, (17)

where R̂(f ) is called the empirical risk; D denotes the training
dataset with the size of |D|. Our goal is to find the optimal
parameters so that R(f ) will be the smallest, but we can only
measure R̂(f ). Therefore, we use the generalization bound to
bound the difference between R(f ) and R̂(f ) [47].

Let us first consider the case where the hypothesis space H
is finite, with size dim(H) = |H|. In other words, we select a
hypothesis (i.e., load forecasting model) from a finite list.

Theorem 1: For any data distribution p∗, and any dataset D
of size m drawn from p∗, the probability that the generalization
error will be more than ε ∈ (0, 1), is upper bounded:

P
(
|R(f )− R̂(f )| > ε

)
≤ 2|H|e−2mε2

,∀f ∈ H. (18)

Proof: Refer to [47] for detailed proof.
Since we adopt neural networks for load forecasting, H is

usually infinite [48] and we cannot use dim(H) = |H|. Thus,
we exploit the Vapnik–Chervonenkis (VC) dimension [48] to
measure the degrees of freedom of H. Because the calculation
of VC dimension is hard, we use the Sauer’s Lemma [48] to
compute the upper bound of the VC dimension by the growth
function. Now we consider the case where H is infinite.

Theorem 2: For a hypothesis space H and any dataset D of
size m, the following generalization bound holds for ε:

P
(
|R(f )− R̂(f )| > ε

)
≤ 4
H(2m)e−

mε2
8 ,∀f ∈ H. (19)

Proof: Refer to [47] for detailed proof.
According to Eq. (19), we can obtain the upper bound of

the generalization risk R(f ) based on the VC dimension:

R(f ) ≤ R̂(f )+
√

8d ln 2em
d + 8 ln 4

δ

m
,∀f ∈ H, (20)

where d is the VC dimension; δ ∈ (0, 1) is confidence level.
According to Eq. (20), the optimism of R(f ) increases with

d but decreases with |D| = m, as is to be expected. Compared
with existing methods, our proposed method does not increase
the model complexity and we use the same dataset for model
training (i.e., d is not risen and m is constant). Therefore, the
second term on the right side of Eq. (20) does not increase,
which proves the effectiveness of our proposed method.
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