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Abstract—Making adequate utilization of smart meter data is
conducive to improving the energy efficiency of the power system
from demand side, especially with booming artificial intelligence
(AI) technology. However, most existing AI-based methods are
highly incompatible to each other due to unique designs based
on their respective tasks. Low compatibility will lead to duplicate
modeling among similar tasks and skyrocketing implementation
costs, which is not suitable for diverse and changing demand-side
tasks. Although large language models provide a promising way
to build the general-purpose models, they either need substantial
resources for pre-training or case-by-case design for fine-tuning.
Hence, there are practically rare task-generic models available for
power systems. In this paper, we propose a novel unified model
for smart meter data applications. Specifically, we first propose
a unified model with mixture-of-expert layers to ensure sufficient
model capacity in a cost-effective manner, which makes the
training from scratch affordable. Then, we design an information
bottleneck-based training scheme to facilitate the unified model
to efficiently learn the generic knowledge. Moreover, we develop a
general framework based on pre-training paradigm to formulate
a uniform objective function and provide a consistent workflow
for different tasks. Finally, the effectiveness and superiority of
our proposed method are validated on public datasets, where the
proposed unified model can be applied to load forecasting, data
imputation as well as anomaly detection, and realizes comparable
performance to state-of-the-art task-specific methods.

Index Terms—Demand-side task, information bottleneck, mix-
ture of expert, smart meter data, unified model

I. INTRODUCTION

TOWARDS the low-carbon power systems, the advanced
metering infrastructure represented by smart meters plays

an indispensable role [1]. Smart meters facilitate the two-way
communication between electric utilities and customers, which
improves the efficiency of system operation and control. By the
end of 2023, the smart meter installations in the United States,
Europe, and China have exceeded 128 million, 186 million,
and 650 million, respectively [2]. The widely deployed smart
meters produce the sheer amount of fine-grained electricity
consumption data, which encompasses a wealth of information
on electricity consumption behaviors of electric customers.
With the deregulation of the power industry, analyzing smart
meter data can provide valuable insights for electric utilities
and customers to reduce energy costs. Meanwhile, in response
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to the penetration of distributed energy resources, smart meter
data analytics can also promote the consumption of renewable
generation and maintain the system balance through demand
response. Therefore, how to apply smart meter data to improve
energy efficiency and grid sustainability from the demand side
is becoming an important and promising topic.

In the past decade, with the boom in artificial intelligence
(AI), research on AI-based smart meter data applications has
emerged explosively. AI technology, especially deep learning,
is able to effectively process and model the complex temporal
dependencies of smart meter data, and therefore has achieved
significant success in smart meter data applications [3]. For
example, Ruan et al. [4] proposed a spatiotemporal graph deep
learning-based method to detect cyberattacks using electricity
load data. Powell et al. [5] presented a charging demand model
based on hybrid methods to advise policymakers on adjusting
utility rates and charging infrastructure, by historical charging
load data. Wang et al. [6] developed a federated learning-
based framework to evaluate regulation capacity using realistic
baseline load data from smart meters. In a nutshell, massive AI
technologies have been applied to various demand-side tasks,
such as load forecasting, customer categorization, and market
bidding, and have realized performance improvements [7].

However, existing studies on AI-based smart meter data
applications face a serious challenge, i.e., incompatibility [8].
To be specific, although these studies are all oriented towards
smart meter data applications, their proposed models can only
be applicable to their respective tasks, because each method is
specially designed for the corresponding task. For instance, the
AI-based methods proposed for load forecasting usually can
not be used to accomplish the baseline load estimation task. To
make matters worse, even for different tasks in the same type,
the proposed models also suffer from mutual incompatibility,
such as day-ahead and hour-ahead load forecasting models.
This may be owing to the different formats of model input
and output, as well as the distinct focuses of different tasks. In
this way, the incompatibility of AI-based methods will lead to
the high implementation cost of smart meter data applications,
especially for electric utilities. This is because that there are
plentiful tasks with diverse types in the demand side that
require electric utilities to analyze and apply smart meter data,
e.g., providing quality service to customers or making profits
from the electricity markets [7]. In this way, electric utilities
need to build separate application models for each task, and
undertake high costs in model training due to the large number
of tasks. In addition, with the deregulation of the demand
side, there is a foreseeable growth in the type and number
of demand-side tasks [3], which will further exacerbate the
costs of electric utilities for building AI-based methods.

To resolve the above problem, building a task-generic model
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rather than multiple task-specific models may be a feasible
approach. The AI community has pursued the development of
unified models capable of fulfilling multiple tasks. Generally,
unified models can be applied to diverse tasks with little or no
additional training [9], which is ideal for electric utilities to
conduct smart meter data applications. On the one hand, the
unified models eliminate the need to train several task-specific
models, thus effectively reducing implementation costs. More-
over, the general purpose of unified models is also conducive
to handling new tasks that may arise in the future. On the other
hand, unified models avoid preparing high-quality training data
for each task separately, thus alleviating the expense of dataset
construction. Therefore, the unified model of smart meter data
applications is very necessary for electric utilities.

However, general-purpose unified models for smart meter
data applications remain unexplored. Considering that smart
meter data are typical time series, we expect to gain inspiration
from research on unified models for time series data, which is
in full swing. Generally speaking, there are two main streams
in existing research, depending on whether large language
models (LLMs) [10] are involved. For the LLM-based method,
the intuitive idea is to build unified models like ChatGPT from
scratch for smart meter data applications. Although the model
capability of GPT family has been well proven to accomplish
different tasks, the resources required for model training are
too many to meet in practice. According to statistics [11], the
training cost of GPT-4 in 2023 is estimated to be 78 million
USD, which is beyond the affordability of common electric
utilities. In addition, some studies point out that the benefits
of LLMs may not be as great as the burdens they impose from
the energy perspective [12]. Therefore, this start-from-scratch
approach is unwise and unrealistic for electric utilities.

To avoid training LLM-based models from zero, researchers
intend to reprogram existing LLMs in other domains to build
unified models for time series data. With the power of LLMs,
such unified models can still cope with different tasks, and the
implementation costs are also reduced to an affordable level
[10]. Recently, there has been an influx of work utilizing LLMs
in power systems. For example, Huang et al. [13] developed
the systematic pipelines based on GPT-4 to fulfill the optimal
power flow and electric vehicle scheduling tasks. Mongaillard
et al. [14] designed a novel user-centric architecture for power
resource scheduling tasks by constructing three LLM-based
agents. Jia et al. [15] proposed a modular framework based on
expertise from power systems and LLM domains, to promote
LLMs to perform power system simulations. However, these
methods require either adding model structure or constructing
prompts for LLMs, which still need expertise and experience
to design according to specific tasks. This will impose a heavy
burden on practical implementation. Furthermore, applying the
existing LLMs to power systems may pose potential security
threats [16], e.g., privacy leakage and cyber attacks. Therefore,
this LLM-reprogramming manner is still not appropriate for
developing unified models for electric utilities that have high
risk-awareness and need to deal with numerous tasks.

In addition to LLM-based methods, there have been efforts
to build unified models by developing novel neural network
architectures. For instance, Wu et al. [17] proposed a new task-

general model for time series data analysis, which exploits
multiple levels of frequency-based features obtained through
Fourier transform to capture complex temporal signals. Zhao
et al. [18] proposed a novel generic model based on multitask
reinforcement learning for large distribution network operation
to perform distinct tasks separately. Even though these studies
can be valid for multiple tasks, there are still some limitations:
1) need to build individual models for each task [17]; 2) need
under an invariant environment [18]. However, electric utilities
usually face a wide range of different tasks in a complex and
changing environment [19]. This leads to the need of a separate
model for each environment and task, which deviates from the
intention of building unified models. Therefore, the existing
non-LLM methods are also not suitable for electric utilities.

In summary, existing general methods on time series data do
not fit electric utilities to build unified models for smart meter
data applications. In particular, electric utilities usually only
have limited resources and capabilities. Hence, they face two
main challenges when developing AI-based unified models as:

• Challenge 1: To sufficiently learn generic knowledge, the
unified model needs to have a high model capacity, which
will correspond to a heavy computational cost in model
training. Meanwhile, generic knowledge is often learned
through the extensive training to avoid omitting valuable
information, thus requiring abundant computing and data
resources. However, electric utilities usually have limited
model training budget, so they might not be able to afford
the training expense of conventional AI-based models.

• Challenge 2: To accomplish multiple tasks of different
types, the unified model needs to be compatible with dif-
ferent input and output formats, which ordinarily requires
additional adaptations to meet the specific requirements
of diverse tasks. However, electric utilities lack adequate
experience and capability to realize the task-by-task de-
sign for different and growing tasks, because their main
business is the power system field rather than AI.

To address these aforesaid challenges, we propose a general-
purpose unified model for smart meter data applications with-
out relying on LLMs, which can accomplish multifarious tasks
on the demand side for electric utilities. Specifically, we first
propose a unified model based on the mixture-of-expert layers,
which is capable of boosting the model capacity to capture
the temporal dependencies of smart meter data with a small
computational cost. Then, we design a new training scheme
with information bottleneck theory, which enables the unified
model to learn sufficient generic knowledge in an efficient
manner. Finally, we develop a pre-training-based framework
to make the proposed unified model able to carry out different
applications with a consistent workflow. To the best of our
knowledge, we are the first to develop the task-generic model
for smart meter data applications. Compared to the published
literature, our key contributions are summarized in threefold:

1) We propose a unified model based on mixture-of-expert
layers, which can be applicable to multiple smart meter
data applications, rather than being task-specific. Unlike
most existing models with a linear relation between the
capacity and cost, the proposed unified model leverages
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mixture-of-expert layers to acquire high model capacity
at a lower computational cost. This makes the expense
of training the unified model from scratch affordable for
electric utilities in practice.

2) We develop a general framework based on pre-training
paradigm, which offers a consistent workflow for diverse
smart meter data applications. Different from the existing
methods, this framework enables the unified models to
perform a variety of applications without the task-by-task
design, which reduces the experience required by electric
utilities to adapt unified models for different applications.

3) We design a training scheme based on the information
bottleneck, which can improve the training efficiency and
the learning effect of the unified model. The information
bottleneck is able to ensure that the unified model learns
generic knowledge instead of task-specific ones or irrele-
vant information, thus reducing the model training costs.

The rest of this paper is organized as follows. Section
II introduces smart meter data applications, followed by the
exposure of the developed general framework. The proposed
unified model and training scheme are elaborated in Section
III. Section IV validates the effectiveness and superiority of
the proposed method, and Section V presents the conclusion
and future work of this paper.

II. GENERAL PRE-TRAINING FRAMEWORK

In this section, we first introduce and classify smart meter
data applications. Then, we expound on the general framework
developed for the proposed unified model.

A. Taxonomy of Smart Meter Data Applications

Typically, smart meters can measure and record information
about electric customers, e.g., load consumption and voltage
levels [20], in near real-time. In this paper, since we focus on
applying smart meter data for demand-side tasks, we mainly
consider load data [3]. In this way, we broadly divide smart
meter data applications into the following 3 categories:

1) Load analysis: It includes dissecting what the data is
like and providing the description and analysis of load data,
such as customer categorization, anomaly detection, and data
imputation. This is also convenient for subsequent stages.

2) Load forecasting: It refers to predicting what will hap-
pen to load data, i.e., providing future information on the data.
Notably, this is the most essential task category of smart meter
data, including point and probabilistic load forecasting.

3) Load application: It involves what decisions can be
made from load data, which reflects the practical value of the
data in the real world. Particularly, this can facilitate electric
utilities with demand-side tasks, such as energy management,
market bidding, and demand response [21].

B. General Framework Based on Pre-Training Paradigm

According to the aforesaid introduction, the task goals of
smart meter data applications vary from each other, especially
in different categories. This makes it more hard to determine
the objective function of unified models as the traditional AI-
based methods, even the common LLM methods, because the

unified model needs to adapt to multiple tasks with different
targets [22]. Inspired by the popular LLMs that have subverted
deep learning, we adopt the pre-training paradigm [23] to
develop a general framework among different tasks for unified
models, which is illustrated in Fig. 1. Specifically, the general
framework first trains unified models on a uniform task in
the pre-training stage, and then adapts the pre-trained unified
models at the fine-tuning stage, thereby accomplishing diverse
tasks with only a single model. The success of this paradigm is
mainly thanks to knowledge learned from massive data during
pre-training, which can contribute to completing various tasks
by offering the priori information [10] for the unified model.

To learn sufficient useful knowledge, the key is to design
a suitable pre-training task for smart meter data. Particularly,
we expect the unified model to learn generic rather than task-
specific knowledge during pre-training so that it can be applied
to multiple smart meter data applications. Moreover, the high
cost of data labeling makes it difficult to construct high-quality
training data for every application in practice, so pre-training
cannot be conducted in a supervised learning way. Considering
that electric utilities possess massive available raw meter data,
we adopt unsupervised learning to acquire generic knowledge
from smart meter data, which is the prevailing manner [23].
However, the lack of explicit labels as learning targets prevents
unsupervised learning from being as good as supervised ones
regarding training effect and efficiency. Hence, a well-designed
pre-training task is crucial to ensure the pre-learning effect.

As described in Section II-A, we focus on load consumption
data recorded by smart meters, which reflects customers’ load
characteristics, including electricity consumption behavior and
habits. In other words, for smart meter data applications, the
essence of using load data as input is actually to utilize the
behind information to realize load analysis, forecasting, and
application. In this way, load characteristics become a common
concern for all applications, even though they have their own
task targets. Therefore, the pre-training task in this paper is to
extract load characteristics of electric customers. Specifically,
we anticipate unified models to learn the generic knowledge
by extracting load characteristics from load data during pre-
training. Moreover, we transform the designed task into a self-
supervised manner to better extract load characteristics, which
has been widely proven to distill beneficial representation from
unlabelled data [24]. To be specific, we randomly mask out a
portion of input data, and then use unified models to extract
load characteristics from masked data. Our goal is to use the
extracted load characteristics to recover complete original load
data, so the pre-trained unified model can be represented as:

fs = argmin
f

1

Ns

Ns∑
i=1

∥xi − g(f(M(xi + ϵ)))∥2, (1)

where Ns is the number of samples in the pre-training dataset;
M(·) denotes the random mask operator; ϵ is Gaussian noise;
f and g denote the unified model and load data recovery model
(see details in Section III-A), respectively.

Since the input and output formats of different tasks are var-
ied, pre-trained unified models will still fall into the dilemma
of task-by-task design during fine-tuning. This will bring about
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Fig. 1. The illustration of the proposed general framework, including the pre-training stage and the fine-tuning stage.

high labor expenditure in implementation. In order to prevent
the cumbersome task-specific designs, we create a consistent
workflow for the unified models to efficiently and conveniently
perform different smart meter data applications, as illustrated
in Fig. 1. Specifically, according to the type of input data,
smart meter data applications are separated into the following
two categories: 1) single-type: only involves smart meter data,
mainly referring to the load analysis tasks of smart meter data
applications; 2) multi-type: contains other inputs in addition
to smart meter data (e.g., weather and location), including
the load forecasting and load application tasks of smart meter
data applications. For category 1, since the input data is the
same as the pre-training task, we only need to add an output
layer behind the unified model to adjust the output format. For
category 2, we establish a new model to perform applications
using the same inputs, but replace the original load data with
the extracted load characteristics. Since the complex temporal
relationships of load data have been processed and distilled by
unified models, the new model does not need to be complicated
and can be realized by common neural networks. In this paper,
we uniformly use the feed-forward neural network to enhance
the consistency of fine-tuning. To sum up, the unified model
can accomplish multiple smart meter data applications by fine-
tuning on the basis of pre-training, which is formulated as:

f∗ = argmin
f

1

N ′

N ′∑
i=1

ℓ (f(xi), yi) + λR(f ; fs), (2)

where f∗ denote the fine-tuned unified model; N ′ represents
the number of samples in fine-tuning dataset, and (xi, yi) is
the i-th data sample; ℓ denotes the loss function; and R(·; ·) is
the regularization operator with weight λ to avoid overfitting.
It should be noted that although some operations are needed in
the framework, we provide a consistent workflow that can be
followed directly, which can still greatly reduce the complexity
of fine-tuning compared to the case-by-case design approach.

In summary, we exploit the pre-training paradigm to furnish
an identical training way for smart meter data applications.
Furthermore, we also design a fine-tuning workflow for the
different applications in a consistent process. As a result, this
general framework allows electric utilities to carry out multiple
tasks without additional design, as summarized in Algorithm
1, which reduces the required expertise and experience.

Algorithm 1: General Framework Based on the Pre-
training Paradigm for Smart Meter Data Applications

Input : The unified model f , pre-training dataset Ds, fine-tuning
dataset Dd.

Output : The pre-trained and fine-tuned unified models fs, f∗.
1 Procedure:
2 Pre-training stage:
3 Perform load characteristics extraction with the unified model f

and then recover original load data as Algorithm 2;
4 Obtain the pre-trained unified model fs;
5 Fine-tuning stage:
6 if the type of input data in Ds is single then
7 Add an output layer behind fs;
8 else
9 Perform load characteristics extraction for Ds with fs;

10 Establish a new model to use load characteristics and Ds;
11 end
12 Train the adapted model and get the fine-tuned unified model f∗;
13 return fs, f∗

III. UNIFIED MODEL AND TRAINING SCHEME

In this section, we unveil the proposed unified model for
smart meter data applications, followed by the elaboration of
the designed training scheme.

A. Unified Model with Mixture-of-Expert Layers

Considering that we aspire for unified model to learn generic
knowledge to handle different tasks, a large amount of data
is required for adequate training, which comes from different
customers. These heterogeneous smart meter data elevate the
training difficulty, leading to the necessity for more powerful
models. Traditionally, model capacity is increased by directly
expanding the number of model layers. However, this approach
brings about a roughly quadratic increase in training costs [25],
and thus is not suitable for electric utilities. To this end, we
propose a novel unified model with mixture-of-expert layers,
which can dramatically increase the model capacity without a
proportional increase in computation. Specifically, the unified
model consists of two primary modules: preprocessing module
and encoding module, each of which comprises several layers.
Fig. 2 reveals the architecture of the unified model, and we
will then present each layer in turn.

1) Patching layer: Because the model input (i.e., load data)
is typical time-series data, the unified model aims to learn
correlations between data in each time steps. However, most
existing studies use point-wise data as input, which often
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results in inadequate extraction of valuable information. Thus,
we convert the model input into patch-level to make it possible
to capture local information from load data, thereby enhancing
the comprehensiveness of extracted information. Specifically,
we first divide the original input x into patches and combine
them into a new sequence xp. In other words, denote the length
of load profile as L and the patch number as P , then the model
input is transformed from x ∈ RLx1 to xp ∈ RP xdP . Moreover,
the model input is normalized to alleviate the distribution shift
between training and test data. In particular, we apply instance
normalization to each load profile separately, which can avoid
the problem of dealing with input data in inconsistent shapes.

Through the use of patches, the number of timesteps in input
data reduces from L to P , which indicates the memory and
computing resources required by unified models will decrease
quadratically by a factor of approximately L/P [26]. Besides,
the data normalization also helps to improve the convergence
speed of model training. In this way, the patching layer enables
the unified model to efficiently process load profiles even with
limited resources, thus improving model performance.

2) Embedding layer: Although the input data is no longer
point-wise after the patching layer, we still perform embedding
transformation on xp to improve its representation capability.
This will facilitate the unified model to better release its high
computational capacity, and accordingly enable it extract more
comprehensive information from load data [27]. Specifically,
considering each patch contains several load data, we apply
linear transformation to enhance the amount of information.
Besides, we adopt the positional encoding [28] to enhance
position information of each patch within the input sequence.
In particular, the patch-level input xp is embedded as follows:

xemb = FC(xp) + PE
(
FC(xp)

)
, (3)

where FC(·) and PE(·) denote fully-connected neural network
and positional encoding function, respectively. It should be
noted that xemb ∈ RP xdmodel is the output of the preprocessing
module, which will then be fed into the encoding module.

3) Attention layer: Following the preprocessing module,
the input data has been fully prepared to facilitate the unified
model to learn generic knowledge. Since we mainly consider
load data as input, the complex temporal dependencies of load
profiles need to be distilled delicately. For this purpose, we

utilize the self-attention mechanism to extract comprehensive
information from the input xemb. Specifically, the self-attention
mechanism [28] builds the similarities between each patch and
other patches in the sequence to capture temporal relationships,
without being restricted by the sequence length. Furthermore,
the self-attention mechanism can focus on important parts and
ignore irrelevant content based on similarities, thus improving
the modeling efficiency. In particular, this mechanism employs
dot product to compute similarity, which can be formulated as:

Atten(xemb) = Softmax
(
Q ·KT

√
dk

)
· V , (4)

where Q = xembWq , K = xembWk, V = xembWv; Wq ,
Wk and Wv denote three transformation matrices with the
same dimension Rdmodel×dk ;

√
dk is the scale factor to avoid

vanishing gradients. Besides, in order to extract comprehensive
information, we also apply the multi-head skill to enhance the
attention mechanism [28]. Specifically, we first project Q, K
and V into several subspaces, followed by performing Eq.
(4) on each subspace separately. Finally, we aggregate the
attention results from all subspaces and then reproject into
the original space. According to Eq. (4), the output xatten of
the multi-head self-attention mechanism can be written as:

xatten = Concat(Atten1(xemb), . . . ,Attenh(xemb)) ·Wo, (5)

where Concat(·) denotes the concatenation operator; Atteni is
the attention result of the i-th head (subspace) and h is the
number of heads; Wo denotes the projection matrix for output.

4) Mixture-of-Expert layer: In the vanilla Transformer, the
attention layer is followed by a feed-forward layer to intensify
the non-linear fitting ability of the model [28]. However, this
is not sufficient for the unified model to process complex
correlations of load data and learn adequate generic knowledge
for different tasks. In the conventional way [25], it is common
to augment the number of attention and feed-forward layers,
which has been shown effectively improve model performance.
Nevertheless, this approach will lead to a roughly quadratic
boost in training costs, making it hard for electric utilities to
meet the demand for model training. For this reason, we draw
on the conditional computation theory to remarkably enhance
model capacity in a cost-effective way [29]. Specifically, we
design a mixture-of-expert layer that is composed of a number
of expert networks and a gating network, to replace the naive
feed-forward layer. In other words, the output of our designed
layer xmoe is no longer determined by a single network, but the
combination of all expert network outputs, where the weight
of each expert network is decided by the gating network:

xmoe =

Ne∑
i=1

G(xatten)i · Ei(xatten), (6)

G(x) = Softmax(x ·Wg), (7)

where Ei(·) and G(·) are the i-th expert network and gating
network, respectively; G(·)i represents the weight of Ei(·);
Wg is the trainable weight matrix of G(·); Ne is the number of
expert networks. It is worth mentioning that the combination of
expert networks can be regarded as a manifestation of swarm
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intelligence, which is different from directly increasing model
layers. In this paper, each expert network is implemented by
feed-forward networks with identical model architectures but
holds separate parameters. In this way, if all expert networks
are activated in each calculation to produce the output, this
will raise a problem: the training cost of the mixture-of-expert
layer is not different from directly adding model layer [25].

In response to the aforementioned issue, we develop a sparse
version of the gating network, where only a handful of expert
networks are allowed to contribute to generating the output at
a time. Specifically, before applying Softmax(·) in Eq. (7), we
only retain the top k values and adjust the remaining values to
−∞, which will make the weight of non-top k values become
0. Moreover, we also insert Gaussian noise before determining
the top k values to enhance randomness, so that each expert
network has an opportunity to be activated [29]. According to
Eq. (7), the sparse gating network can be formulated as:

G(x) = Softmax(TopK(Noise(x), k)), (8)

Noise(x) = x ·Wg + ϵΦ · Softmax(x ·Wϵ), (9)

TopK(x, k)i =

{
xi, if xi is the top k of x

−∞, otherwise
, (10)

where ϵΦ is the noise from standard Gaussian distribution; Wϵ

denotes the trainable noise matrix that further increases the
stochasticity of the process of selecting top k experts. When
G(x)i is 0, the model will not need to compute Ei(x), thereby
significantly reducing training costs to improve efficiency. It
is important to note that although only a few expert networks
are involved in computing xmoe, this sparse manner will not
degrade the model capacity, because all expert networks are
considered and selected by the gating network. Moreover, the
combination of expert networks can further enhance the non-
linear ability and also avoid the mode collapse problem [29].

However, the sparsity of the gating network may cause it
to converge to an eccentric state where G(x) always assigns
larger weights to certain expert networks rather than equally.
This makes sense because some experts will be favored at the
start and thus train faster, leading to being more likely to be
selected as the top k experts in the follow-up. It goes without
saying that this vicious circle will render most expert networks
useless and reduce model capacity. Regarding this undesirable
phenomenon, we adopt the soft constrain strategy to avoid the
imbalance issue among expert networks [29]. Specifically, we
define the value of an expert network as the sum of its weights
from G(·) over the data, which can be formulated as:

Value(X)i =
∑
x∈X

G(x)i, (11)

where X is a batch of training samples and Value(X)i denotes
the value of the i-th expert network on X . In addition, we also
portray the participation degree of expert networks in decision-
making from a probabilistic perspective. Similarly, we define
the expert’s payload as the sum of the probabilities that its

weights are non-zero over the data, as follows:

Payload(X)i =
∑
x∈X

Φ

(
(x ·Wg)i − Except(Noise(x), k, i)

Softmax((x ·Wϵ)i)

)
,

(12)
where Φ is the cumulative distribution function of the standard
Gaussian distribution; Payload(X)i denotes the payload of the
i-th expert network on X; Except(x, k, i) represents the k-th
top element of x except element i. It should be mentioned that
G(x)i ̸= 0 if and only if Noise(x)i > Except(Noise(x), k, i).

Considering that Value(X) and Payload(X) describe the
contribution of each expert network to the output of X , we can
use their coefficient of variation to quantify the dispersion of
balance levels among expert networks. In particular, a smaller
coefficient of variation implies greater equality. Therefore, we
add the coefficient of variation of Value(X) and Payload(X)
into the loss function, thus ensuring equal contributions.

It should be noted that since the goal of the pre-training task
is to recover load profiles using extracted load characteristics,
we add a linear layer followed by the unified model for output,
which corresponds to the model g in Eq. (1). This is because
most temporal features have been extracted, there is no need
to require too much model capacity to produce recovered data.
In this way, we choose the linear layer for load data recovery,
which is also the popular approach in many pre-training task
[10]. As for the fine-tuning stage, we adopt the feed-forward
neural network or linear layer according to the type of tasks,
i.e., following the consistent workflow in Section II-B.

B. Model Training Scheme Based on Information Bottleneck

According to Eq. (1), the output of unified models (i.e., load
characteristics) needs to contain as much information about
load data as possible so that recovery error can be minimized.
However, due to the high model capability of neural networks,
the proposed unified model will inevitably learn the irrelevant
information during pre-training [30], which results in the need
for more training to ensure it can learn generic knowledge.

To improve the pre-training efficiency, we design a new
training scheme based on information bottleneck from the view
of information theory [30]. To be specific, we apply a con-
straint to restrict the irrelevant information about input data X
in load characteristics Z. Typically, the mutual information is
used to measure the relevance between two random variables:

I(X,Y ) =

∫
dxdy p(x, y) log

p(x, y)

p(x)p(y)
, (13)

where I(X,Y ) denotes the mutual information of X and Y ;
and p(x, y) is the joint probability density of X and Y . In this
way, the objective of pre-training can be reformulated as:

max I(Z, Y ) s.t. I(X,Z) ≤ Ic, (14)

where Ic is the information constraint. By introducing the
Lagrange multiplier β, the objective function is rewritten as:

RIB = I(Z, Y )− βI(X,Z), (15)

where RIB denotes the information bottleneck [30]. Hence, the
training goal is to make Z that is maximally informative about
Y while being maximally compressive about X . Consequently,
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the unified model can learn generic knowledge from load data
with high quality and efficiency by maximizing RIB.

Following the information theoretic view, there is an infor-
mation flow X → Z → Y in unified models. Specifically,
in the pre-training task, the proposed unified model extracts
load characteristics Z from original load data X , and produces
recovered load data Y based on Z, which means that valid
information is transmitted from X to Y via Z. Moreover, since
Z is inherently determined by X and does not depend on Y ,
the joint distribution p(X,Y, Z) can be represented as:

p(X,Y, Z) = p(X)p(Y |X)P (Z|X), (16)

where p(Z|X) is the conditional distribution, which represents
the unified model f with X as input and Z as output. Similarly,
p(Y |Z) corresponds to the load data recovery model g. Thus,
according to the Bayes’ theorem and Eq. (13), the two mutual
information terms in Eq. (15) can be rewritten as:

I(Z, Y ) =

∫
dzdy p(z, y) log

p(y|z)
p(y)

,

I(X,Z) =

∫
dxdz p(x, z) log

p(z|x)
p(z)

,

(17)

where p(y|z) =
∫
dxp(y|x)p(z|x)p(x)

p(z) , p(z) =
∫
dxp(z|x)p(x).

However, since p(x) is difficult to compute in practice, p(y|z)
and p(z) are intractable, which leads to the maximization of
RIB being computationally infeasible during pre-training.

To this end, we utilize the variational inference [31] to solve
the intractability problem. Specifically, variational inference
refers to using a simple distribution as an approximation of the
target distribution, and achieving approximate replacement by
continuously narrowing the distance between them. Here, we
will apply variational inference to the two intractable terms in
turn. First, we let q(y|z) be the variational approximation of
p(y|z). In particular, we can get the following lower bound:

I(Z, Y ) ≥
∫

dxdzdy p(x)p(y|x)p(z|x) log q(y|z). (18)

Then, we consider another term p(z), and use m(z) to be its
variational approximation. Similarly, we gain the upper bound:

I(X,Z) ≤
∫

dxdz p(x)p(z|x) log p(z|x)
m(z)

. (19)

Substituting both upper and lower bounds into Eq. (15), we
can obtain the lower bound of RIB (i.e., its variational form):

RIB ≥
∫

dxdzdy p(x)p(z|x)p(y|x) log q(y|z)

− β

∫
dxdz p(x)p(z|x) log p(z|x)

m(z)
= RVIB,

(20)

where RVIB is the variational information bottleneck [31].
Now, the maximization of RIB can be achieved by maximizing
RVIB. To compute the lower bound RVIB, we acquire the
empirical distribution by sampling on the pre-training dataset,
which can approximate p(x, y) = p(x)p(y|x). In this way,
RVIB can be estimated in the following approach:

RVIB (21)

≈ 1

N ′

N ′∑
i=1

[∫
dz

(
p(z|xi) log q(yi|z)− βp(z|xi) log

p(z|xi)

m(z)

)]

=
1

N ′

N ′∑
i=1

[
Ez∼p(z|xi) log q(yi|z)− βKL(p(z|xi)∥m(z))

]
,

where KL denotes the Kullback–Leibler divergence. In conse-
quence, maximizing RIB can be transformed into minimizing
the following objective during pre-training:

min
1

N ′

N ′∑
i=1

[
Ez∼p(z|xi) − log q(yi|z) + βKL(p(z|xi)∥m(z))

]
.

(22)

Because p(Z|X) corresponds to the unified model f , we can
sample multiple z from the output of f , and then calculate the
approximation of the mathematical expectation Ez∼p(z|xi):

Ez∼p(z|xi) log q(yi|z) =
1

Nz

Nz∑
s=1

log q(yi|zs), (23)

where Nz is the total sampling amount of z from p(z|xi).
Furthermore, since q(y|z) is the variational approximation,
we assume that its distribution is the multivariate Gaussian,
i.e., q(yi|zs) = N (µ′

s,
∑∑∑

σ′). By this means, q(yi|zs) can be
represented in analytical form, as follows:

log q(yi|zs) = −1

2

K∑
k=1

(yki − µ
′(k)
s )2

σ′(k) − log

√√√√(2π)K
K∏

k=1

σ′(k)

(1)
= −∥yi − µ′

s∥22, (24)

where K denotes the dimension of N (µ′
s,
∑∑∑

σ′). In particular,
the equality (1) holds because we set the value of all elements
in

∑∑∑
σ′ to 1

2 for ease of calculation, i.e., σ′(k) = 1
2 .

Similarly, we also assume that m(z) belongs to standard
multivariate Gaussian distribution, i.e., m(z) ∼ N (1,0). In
addition, we suppose Z|X obeys the multivariate Gaussian
distribution, i.e., p(z|x) ∼ N (µ,

∑∑∑
σ). This makes sense be-

cause the multivariate Gaussian distribution has strong fitting
ability, and can thus fit the distribution of the outputs of model
f . In this way, the KL term in Eq. (22) can be written as:

KL(p(z|xi)∥m(z)) =

d∑
j=1

1

2
(−1 + µ(j)2 + σ(j)2 − 2 log σ(j)),

(25)
where µ(j) and σ(j) are the j-th element of mean vector µ and
covariance matrix

∑∑∑
σ in d-dimensional Gaussian distribution.

In conclusion, combining Eqs. (22)–(25), we can acquire
the information bottleneck-based objective function of unified
models during pre-training. Meanwhile, since the pre-training
task is performed by the proposed unified model f , based on
Eqs. (1) and (11)–(12), the loss function can be formulated as:

L =
1

N ′

N ′∑
i=1

∥xi − g(f(M(xi) + ϵ))∥22

+ β
1

N ′

N ′∑
i=1

d∑
j=1

(−1 + µ(j)2 + σ(j)2 − 2 log σ(j)) (26)
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Algorithm 2: Unified Model Pre-training Scheme
Input : The unified model f , pre-training dataset Ds, batch size

B, training epoch E, Adam parameters α, β1, β2.
Output : The pre-trained unified model fs.

1 Procedure:
2 for e = 1, . . . , E do
3 for each batch of training data do
4 Sample B data x ∼ Ds and add Gaussian noise ϵ to x;
5 for i = 1, . . . , B do
6 Convert x(i) ∈ RLx1 into batch-wise x

(i)
p ∈ RP xdP

and perform instance normalization to x
(i)
p ;

7 Randomly mask x
(i)
p and then embed x

(i)
p into x

(i)
emb;

8 Calculate gate weights G(x(i)) according to Eqs.
(8)–(10), and two constraint items Value(x(i)) and
Payload(x(i)) according to Eqs. (11) and (12);

9 Extract load characteristics z(i) based on Eqs. (4) and
(6), and obtain recovered data x̂(i) from z(i);

10 Compute the pre-training loss L(i) based on Eq. (26);
11 end
12 Update model’s parameters based on Adam algorithm

f ← Adam(∇f
1
B

∑B
i=1 L

(i), αAdam, β1, β2);
13 end
14 end
15 return f

+ ωvalue
Var(Value(X))

Mean(Value(X))2
+ ωload

Var(Payload(X))

Mean(Payload(X))2
,

where µ and σ are the mean and standard deviation of unified
model’s output (i.e., f(M(xi) + ϵ)), respectively; Mean(·)
and Var(·) denote the mean and variance functions; ωvalue and
ωload represent two factors for balancing expert networks. In
addition, we adopt the Adam algorithm for model update, and
the details of pre-training are summarized in Algorithm 2. It
should be noted that the fine-tuning stage uses the conventional
model training ways, instead of the designed training scheme.

IV. CASE STUDIES

A. Experiment Settings

1) Dataset: To satisfy the amount of training data required
to learn generic knowledge, we choose two public datasets
for our experiments, which are both composed of load profiles
recorded by smart meters. Specifically, [32] contains historical
load profiles of nearly 6,500 customers in Ireland from July
2009 to December 2010. Meanwhile, [33] includes electricity
consumption data for over 5,000 UK residents from November
2011 to February 2014. To ensure data availability, we perform
data preprocessing on raw datasets, and ultimately screen and
retain approximately 3 million complete daily load profiles
with a granularity of 30 minutes. Considering that there are
two stages in our general framework, we use 80% of overall
data for pre-training and the remaining for fine-tuning. In
particular, the fine-tuning dataset is divided for the model
training, validation, and testing in specific tasks in the ratio of
6:2:2, where the dataset split in different tasks is randomized.

2) Task & Metric: Considering the proposed unified model
is supposed to be able to accomplish multiple smart meter data
applications, we select three different tasks to comprehensively
verify its effectiveness, as follows:

• Load forecasting: It refers to predicting future electricity
consumption based on historical load, weather informa-
tion, and other factors. Since this is a regression task,

TABLE I
IMPLEMENTATION DETAILS OF THE PROPOSED METHOD

Parameter Definition Value
P the number of data patch 12

dmodel the dimension of embedding vector 16
dk the dimension of Q, K, and V parts 4
Ne the number of expert networks 8
k the expert value of top selection 2

Nmodel the layer number of encoding module 8
β the value of Lagrange penalty 0.001

ωvalue, ωload balancing factors of expert networks 0.1, 0.1
E the number of training epochs 100
B the batch size of training data 16
α the learning rate of Adam 0.001

we choose RMSE, MAE, and MAPE as metrics. Here,
we consider day-ahead and hour-ahead load forecasting,
which are the most common tasks on the demand side.

• Anomaly detection: It refers to the identification of data
points that deviate from the standard or expected. Based
on the confusion matrix, we select three common clas-
sification metrics, i.e., accuracy, precision, and recall.
Here, we consider data anomalies caused by scaling and
ramping attacks, which are simulated according to [34].

• Data imputation: It refers to replacing missing items with
substituted values based on available data. To evaluate the
performance, we also adopt RMSE, MAE, and MAPE to
compute imputation effects of missing parts. In this paper,
we consider the missing range from 10% to 50%, which
are the regular missing ratios in reality except for attacks.

In particular, these selected tasks encompass every category
described in Section II-B, and are also classical tasks for time
series data. Therefore, we believe that they are representative
enough to validate our proposed method.

3) Implementation: The proposed method is implemented
by the open-source machine learning framework PyTorch, and
the implementation details are summarized in Table I. Besides,
we conduct all experiments on an Ubuntu 18.04 LTS platform,
which is equipped with the Intel Core i9-10980XE CPU and
NVIDIA GeForce RTX 3090 GPU.

B. Performance Comparison with Task-specific Methods

In this section, we validate the effectiveness of our proposed
method on different tasks by comparing it with state-of-the-art
studies. In particular, we choose three benchmarks from each
task for performance comparison, as follows:

• A1: A hybrid load forecasting model combining LSTM
and self-attention proposed in 2021 by Zang et al. [35].

• A2: A robust framework for individual load forecasting
under concept drift proposed in 2022 by Yang et al. [36].

• A3: A short-term load forecasting model based on causal
inference proposed in 2024 by Wang et al. [37].

• B1: A machine learning anomaly detection model with
statistical features proposed in 2019 by Cui et al. [38].

• B2: A non-intrusive load monitoring method for anomaly
detection proposed in 2021 by Azizi et al. [39].

• B3: A unsupervised anomaly detection framework for
load data proposed in 2023 by Wang et al. [40].
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TABLE II
NUMERICAL RESULTS OF PERFORMANCE COMPARISON FOR LOAD FORECASTING AND ANOMALY DETECTION

Load Forecasting Anomaly Detection

Method Day-ahead Hour-ahead Method Scaling attack Ramping attack
MAE RMSE MAPE MAE RMSE MAPE Acc. Prec. Recall Acc. Prec. Recall

A1 0.2524 0.1938 10.4691 0.1918 0.1353 7.8619 B1 0.8121 0.9173 0.7774 0.8219 0.8869 0.7483
A2 0.2487 0.1842 9.9956 0.1741 0.1251 7.4185 B2 0.8239 0.8992 0.7465 0.8277 0.8950 0.7566
A3 0.2426 0.1857 10.1279 0.1877 0.1192 7.2394 B3 0.8328 0.8917 0.7566 0.8343 0.9032 0.7548

Proposed 0.2443 0.1839 9.9329 0.1796 0.1275 7.3848 Proposed 0.8444 0.9234 0.7729 0.8329 0.8918 0.7567
*MAE and RMSE are in kW and MAPE is in percentage. Bold term indicates the best performance, while underlining term represents second best.
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Fig. 3. The performance comparison of the load forecasting task in three metrics. The three dashed lines in each violin plot represent the first quartile (25%),
median (50%), and third quartile (75%) from top to bottom, respectively. (a) MAE, (b) RMSE, (c) MAPE.
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Fig. 4. The performance comparison of the anomaly detection task under two
scenarios. The central number in each cell represents the standard deviation of
the corresponding evaluation metric. (a) Scaling attack, (b) Ramping attack.

• C1: A missing load data imputation method considering
neighbor information proposed in 2021 by [41].

• C2: A building load data imputation model with mixture
factor analysis proposed in 2021 by Jeong et al. [42].

• C3: A missing load data restoration method based on the
bidirectional encoder proposed in 2024 by Hu et al. [43].

Note that notation A, B, and C correspond to load forecast-
ing, anomaly detection, and data imputation tasks, respectively.
In addition, we repeat all experiments five times and calculate
the average value as results, to avoid human interference.

Table II summarizes performance comparison results of load
forecasting and anomaly detection tasks. It can be observed
that the proposed unified model achieves results that are not

inferior to these task-specific benchmarks in load forecasting.
Specifically, the RMSE and MAE of our proposed method are
the lowest in the day-ahead scenario, with values of only 0.18
kW and 9.9%, respectively. Moreover, although its MAE is
larger than benchmarks, the gap is almost negligible. Similarly,
in the hour-ahead scenario, the proposed method is very close
to benchmarks in all evaluation metrics, where the difference
of MAPE is within 0.15%. Besides, the quantile comparison in
Fig. 3 comprehensively demonstrates that our proposed model
has comparable performance to benchmarks. It is worth noting
that our proposed method shows a performance degradation as
temporal resolution increases, where its results are not the best
in the hour-ahead scenario. This is reasonable since the unified
model will inevitably sacrifice some accuracy for broad appli-
cability, while this degradation is acceptable owing to the small
performance discrepancy. As for the anomaly detection task,
our proposed method realizes competitive performance under
scaling attack, with an accuracy of 0.84 and a precision of
0.92. Moreover, Fig. 4 shows that the performance fluctuation
of the proposed method is also not the largest, which further
signifies it is not inferior to benchmarks. Similarly, there is a
slight performance decline when switching to ramping attack,
where its accuracy and precision drop by 0.16% and 1.28%
compared to the best benchmark, respectively. In summary, the
subtle performance gaps in practical tasks demonstrate that our
proposed method can be applied to multiple applications.

In order to intuitively evaluate data imputation effects under
different missing ratios, we provide a visual demonstration of
performance comparison for the proposed unified model with
benchmarks, as presented in Fig. 5. It can be seen that our
proposed method ranks at the top in almost all five scenarios.
Specifically, its RMSE is controlled within 0.3 kW and 0.4
kW at missing rates of 10% and 20%, and the corresponding
MAPEs are both the lowest at 12.8% and 14.6%. Furthermore,
even though the proposed method lags behind some bench-
marks in other scenarios, the performance gaps are tolerable,
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Fig. 5. The performance comparison of the data imputation task in two
evaluation metrics. (a) RMSE, (b) MAPE.
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Fig. 6. The ablation study of the mixture-of-expert layer and information
bottleneck in our proposed method under the data imputation task. None: the
proposed method without mixture-of-expert layer and information bottleneck;
Plus A: the proposed method without mixture-of-expert layer; Plus B: the
proposed method without information bottleneck.

where the largest discrepancies in RMSE and MAPE are only
0.02 kW and 0.5%, respectively. In other words, although
these benchmarks are task-specific, their performance is not
significantly better than our proposed method, which can carry
out multiple tasks. Therefore, the wide applicability of the
unified model is further verified, and the effectiveness and
superiority of our proposed method are also demonstrated.

C. Ablation Study

In this part, we investigate the model performance on tasks
after removing certain components to explore their contribu-
tions. Specifically, we inspect the mixture-of-expert layer and
information bottleneck, which are at the heart of the proposed
method. For clarity, we take data imputation as an example.
Similarly, we present the average values of five independent
experiments as the results and illustrated in Fig. 6.

It is clear to see that there is a significant increase in model
performance with the support of the information bottleneck
and mixture-of-expert layer, where the RMSE is reduced from

0.65 kW by 32.4% and 52.8%. The different reduction rates
reflect that these two core components contribute differently. In
particular, the mixture-of-expert layer provides a remarkable
enhancement in accuracy with the MAE of 0.22 kW, while
the information bottleneck focuses more on the variance but its
MAE still exceeds 0.32 kW. Furthermore, when we continue to
add another component on this basis, the model performance
changes quite differently. Specifically, after introducing the
mixture-of-expert layer, the RMSE and MAE are greatly re-
duced by 8.3% and 6.2%, and the error variance is kept small,
where the standard deviation of MAPE is controlled at 1.95%.
On the other hand, by adding the information bottleneck, there
is even a slight degradation in model performance, e.g., the
RMSE goes from 0.30 kW to 0.40 kW. However, the variance
of all metrics has been significantly diminished, with a decline
of 36.4%, 36.5%, 23.1%, respectively. We believe that this is
reasonable because the role of the information bottleneck is
to enhance the generalization ability, and there is a trade-off
between accuracy and generalization. In summary, both the
mixture-of-expert layer and information bottleneck contribute
to model performance, with the former taking the lead, which
further demonstrates the effectiveness of our proposed method.

D. Hyperparameter Sensitivity

In this part, we explore the effectiveness of our proposed
method from the perspective of methodology hyperparameters.
Specifically, we focus on four hyperparameters, including the
the number of expert network Ne, sparse selection k, patch
dimension dP , and Lagrange multiplier β. Here, we consider
both the model performance and training time for evaluation.
Similarly, we choose the data imputation task and present the
average values of repeated experiments, as shown in Fig. 7.

It can be seen that as Ne increases, the model performance
fluctuates slightly, with a maximum discrepancy of only 0.054
kW in RMSE. At the same time, the training time continues
to rise. This phenomenon is more evident in the study of k. In
particular, there is almost no gap in model performance under
different values of k, while the training time is multiplying at a
constant rate. This indicates that our proposed unified model
does not need to increase model parameters to improve the
performance, which will reduce the model training cost. In
addition, with the growth of dP , the variation of RMSE is not
obvious, but the training time continues to significantly reduce
from 4.5 seconds to less than 2 seconds. This demonstrates the
proposed model can improve efficiency without compromising
performance. In contrast, as β boots, the model’s training time
hardly changes, but the RMSE climbs significantly due to the
pursuit of generalization. In other words, in order to achieve
the same performance, different values of β will bring different
training costs. This means the unified model can learn generic
knowledge with high efficiency via the information bottleneck,
thus further proving the effectiveness of our proposed method.

V. CONCLUSION

In this paper, we focus on building data-driven models for
smart meter data applications. Owing to specialized properties
of each application, existing AI-based methods are uniquely
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Fig. 7. The data imputation results under different hyperparameter settings
of the proposed method in terms of RMSE and the training time. The training
time represents the total duration to train one round with every 100 samples.

designed, leading to their low compatibility for different tasks.
In addition, because of the astronomical cost of pre-training
and elaborate design of fine-tuning, the vogue large language
models are also not suitable. To address this issue, we propose
a unified model for smart meter data applications. Specifically,
we develop a general framework to unify training objective and
build consistent workflow for various tasks. Then, we propose
a unified model to learn generic knowledge in low costs with
mixture-of-expert layers. Moreover, we design an information
bottleneck-based training scheme for the efficient knowledge
learning. Case studies verify the effectiveness of our proposed
method, where its performance differences to state-of-the-art
methods in three tasks are within 2.9%, 1.2%, and 1.6%. In
addition, we inspect the contribution of core components via
the ablation study and sensitivity analysis, where the impact of
their hyperparameter selection on performance are controlled
within 10%. Besides, the training time variation is within 0.05
seconds per sample, which further verifies the effectiveness.

Considering that some operations are still required in the
fine-tuning stage (i.e., add linear layer or new model), how to
further improve the universality and automation of the general
framework is very necessary, and will be considered in our
future work. Furthermore, we also intend to apply the unified
model to power system tasks in other fields in the future, which
are beyond the scope of smart meter data applications.
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